K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

GIAI ; TA CO : C= 1+2+2^2+2^3+....+2^2010       SUY RA: 2C= 2+2^2+2^3+...+2^2011     SUY RA  2C-C= (2+2^2+2^3+...+2^2011)-(1+2+2^2+...+2^2010)  SUY RA C= 2^2011-1  VI 2^2011-1<2^2011  SUY RA C < D   VAY C<D

17 tháng 11 2015

Gọi 2^0 + 2^1 + 2^2 + 2^3 +...+2^2010 là a

Ta có:

A= 2^0 + 2^1 + 2^2 + 2^3 +...+2^2010

2A=21+22+23+...+22010+22011

2A-A=22011-1

A=22011-1

=>2^0 + 2^1 + 2^2 + 2^3 +...+2^2010=B

3 tháng 12 2018

Mk nghỉ giải lao sau đó mk lm cho

3 tháng 11 2021

Có 333^444=(333^4)^111 và 444^333=(444^3)^111 
Như vậy ta cần so sánh 333^4 và 444^3: 
Vì 333^4/444^3=3^4*111^4/(4^3*111^3)=3^4*11... nên 333^4>444^3 do đó 
333^444>444^333 

15 tháng 7 2017

a) \(A=2^0+2^1+2^2+2^3+...+2^{2010}\) và  \(B=2^{2011}-1\)

\(2A=2^1+2^2+2^3+....+2^{2011}\)

\(2A-A=\left(2^1+2^2+2^3+....+2^{2011}\right)-\left(2^0+2^1+2^2+2^3+...+2^{2010}\right)\)

\(A=2^{2011}-1\)

Vì \(2^{2011}-1=2^{2011}-1\)nên \(A=B\)

c) \(A=10^{30}\)và \(B=2^{100}\)

\(A=10^{30}=\left(10^3\right)^{10}=1000^{10}\)

\(B=2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)

Vì \(1000< 1024\)nên \(10^{30}< 2^{100}\)

e) \(A=3^{350}\)và  \(B=5^{300}\)

\(A=3^{350}=\left(3^7\right)^{50}=2187^{50}\)

\(B=5^{300}=\left(5^6\right)^{50}=15625^{50}\)

Vì \(2187< 15625\)nên \(3^{350}< 5^{300}\)

17 tháng 7 2017

Thank you.

17 tháng 4 2017

a hon b nhe thanh ha

18 tháng 12 2015

a) A= 2^0+2^1+2^2+2^3+...+2^2010

A=1+2^1+2^2+2^3+...+2^2010

2A=2+2^2+2^3+2^4+...+2^2011

2A-A=(2+2^2+2^3+2^4+...+2^2011)+(1+2^1+2^2+2^3+...+2^2010)

A=2^2011-1

c)5^2n và 2^5n

Ta có: 5^2n=10^n

          2^5n=10^n

Vì 10^n = 10^n nên 5^2n=2^5n