Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính A=17/18+1718/1718+171717/181818+...+1717...17/1818...18(2018 chữ số 17 và 18). Ai làm đc tk cho
\(A=\frac{17}{18}+\frac{1717}{1818}+\frac{171717}{181818}+...+\frac{1717..17}{1818...18}\)(2018 số 17 và 18)
\(=\frac{17}{18}+\frac{17.101}{18.101}+\frac{17.10101}{18.10101}+...+\frac{17.1010...01}{18.1010...01}\)(2017 cặp số 10 liên tiếp và dư 1 số 1)
\(=\frac{17}{18}+\frac{17}{18}+\frac{17}{18}+...+\frac{17}{18}\left(2018\text{ số hạng}\right)\)
\(=\frac{17}{18}.2018=\frac{17153}{9}\)
a) 2316 + 115 = 2431
b) (-315)+ (-15) = -330
c) (-215)+215 = 0
d) (-200)+200 = 0
a)
\(\dfrac{-2}{3}\)>\(\dfrac{5}{-8}\)
b)
\(\dfrac{398}{-412}\)<\(\dfrac{-25}{-137}\)
c)
\(\dfrac{-14}{21}\)<\(\dfrac{60}{72}\)
\(a,2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\) nên \(2^{300}< 3^{200}\)
\(b,8^5=32768\)
\(6^6=46656\)
Vì \(32768< 46656\) nên \(8^5< 6^6\)
\(c,3^{450}=\left(3^3\right)^{150}=27^{150}\)
\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
Vì \(27^{150}>25^{150}\) nên \(3^{450}>5^{300}\)
#Ayumu
\(a,16^{19}=\left(2^4\right)^{19}=2^{76}\\ 8^{25}=\left(2^3\right)^{25}=2^{75}\)
Vì \(2^{76}>2^{75}=>16^{19}>8^{25}\)
b,\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì \(243^{100}>5^{100}=>3^{500}>5^{100}\)
a) dấu >
b) dấu >
a) 2317 - 2316 = 2316(23-1) = 2316.22
2316 - 2315 = 2315( 23-1) = 2315.22
Do........... ( tới đây chắc bn làm đc)
b) 1719 + 1717 = 1717( 172+ 1) = 1717. ( 289+1) = 1717 . 290
2 .1718 = 1717 . (17.2) = 1717. 34
Do..................