K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
a.
2200 < 3200
b.
1255 = (53)5 = 515 > 514 = (52)7 = 257
1255 > 257
a) \(2^{200}\) và \(3^{200}\)
Ta có: \(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8< 9\) nên \(8^{100}< 9^{100}\)
Vậy \(2^{200}< 3^{200}\)
\(2^{200}\) và \(3^{200}\) đã cùng số mũ nên bạn không cần so sánh cũng được
b) \(125^5\) và \(25^7\)
Ta có : \(125^5=\) \(\left(5^3\right)^5\) \(=5^{15}\)
\(25^7=\left(5^2\right)^7\)\(=5^{14}\)
Vì \(15>14\) nên \(5^{15}>5^{14}\)
Vậy \(125^5>25^7\)