Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Gọi dãy đó là A, ta có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\)
\(2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\)
\(2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\right)\)
\(A=\dfrac{1}{2}-\dfrac{1}{2^{2014}}\)
Vì \(\dfrac{1}{2}< 1;\dfrac{1}{2^{2014}}< 1\) nên \(\dfrac{1}{2}-\dfrac{1}{2^{2014}}< 1\)
\(\Rightarrow A< 1\)
b) \(A=\dfrac{10^{11}-1}{10^{12}-1}\) và \(B=\dfrac{10^{10}+1}{10^{11}+1}\)
Ta có:
\(A=\dfrac{10^{11}-1}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-10}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-1+9}{10^{12}-1}\)
\(10A=1+\dfrac{9}{10^{12}-1}\)
Tương tự:
\(B=\dfrac{10^{10}+1}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+10}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+1+9}{10^{11}+1}\)
\(10B=1+\dfrac{9}{10^{11}+1}\)
Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\) nên \(10A< 10B\)
\(\Rightarrow A< B\)
B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)]
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)]
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1)
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1
=> B > A
A = \(\frac{10^{11}-1}{10^{12}-1}\) và \(B=\frac{10^{10}+1}{10^{11}+1}\)
Đề thế này à
Nếu có 1 phân số a/b < 1 thì a/b < a+n/b+n.
Tương tự ta có: A < (1011 -1)+11/(1012-1)+10
A < 1011+10/1012+10
A < 10(1010+1)/10(1011+1)
A < 10(1010+1)/10(1011+1)
A < 1010+1/1011+1
Vậy A < B
ếu có 1 phân số a/b < 1 thì a/b < a+n/b+n.
Tương tự ta có: A < (1011 -1)+11/(1012-1)+10
A < 1011+10/1012+10
A < 10(1010+1)/10(1011+1)
A < 10(1010+1)/10(1011+1)
A < 1010+1/1011+1
Nên A < B
Nếu có 1 phân số a/b < 1 thì a/b < a+n/b+n.
Tương tự ta có: A < (1011 -1)+11/(1012-1)+10
A < 1011+10/1012+10
A < 10(1010+1)/10(1011+1)
A < 10(1010+1)/10(1011+1)
A < 1010+1/1011+1
Vậy A < B
B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)]
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)]
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1)
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1
=> B > A
Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(A< \frac{10^{11}-1+11}{10^{12}-1+11}\left(10^{11}-1< 10^{12}-1\right)\)
\(A< \frac{10^{11}-10}{10^{12}-10}\)
\(A< \frac{10.\left(10^{10}-1\right)}{10\left(10^{11}-1\right)}\)
\(A< \frac{10^{10}-1}{10^{11}-1}\)
Mà \(B=\frac{10^{10}+1}{10^{11}+1}>\frac{10^{10}-1}{10^{11}-1}\)
\(\Rightarrow A< B\)
HT
\(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
Ta thấy:
\(A< A+1=\frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=B\)
Vậy A<B