Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
100 x 100 = 100 x (99 + 1) = 100 x 99 + 100
99 x 101 = 99 x (100 + 1) = 99 x 100 + 99
Vì 100 > 99 nên 100 x 100 > 99 x 101
Ta có: \(A=\frac{2017^{99}+1}{2017^{100}+1}\Rightarrow2017A=\frac{2017^{100}+2017}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)
\(B=\frac{2017^{100}+1}{2017^{101}+1}\Rightarrow2017B=\frac{2017^{101}+2017}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)
\(\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\)
\(\Rightarrow2017A>2017B\Rightarrow A>B\)
Vậy...
Đặt \(A=\frac{2017^{99}+1}{2017^{100}+1}\)nên \(2017A=\frac{2017^{100}+2017}{2017^{100}+1}=\frac{2017^{100}+1+2016}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)
\(B=\frac{2017^{100}+1}{2017^{101}+1}\)nên \(2017B=\frac{2017^{101}+2017}{2017^{101}+1}=\frac{2017^{101}+1+2016}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)
Vì \(1=1;\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\)
Hay \(2017A>2017B\)nên \(A>B\)
Vây \(\frac{2017^{99}+1}{2017^{1001}+1}>\frac{2017^{100}+1}{2017^{101}+1}\)
\(\dfrac{1}{2022}\cdot A=\dfrac{2022^{100}+1}{2022^{100}+100}=1-\dfrac{99}{2022^{100}+100}\)
\(\dfrac{1}{2022}B=\dfrac{2022^{101}+1}{2022^{101}+100}=1-\dfrac{9}{2022^{101}+100}\)
2022^100+100<2022^101+100
=>-99/2022^100+100<-99/2022^101+100
=>A<B
\(A=\frac{2017^{99}}{2017^{100}-2}\)
=> \(2017A=\frac{2017^{100}}{2017^{100}-2}=\frac{2017^{100}-2+2}{2017^{100}-2}=1+\frac{2}{2017^{100}-2}\)
\(B=\frac{2017^{100}}{2017^{101}-2}\)
=>\(2017B=\frac{2017^{101}}{2017^{101}-2}=\frac{2017^{101}-2+2}{2017^{101}-2}=1+\frac{2}{2017^{101}-2}\)
Do \(\frac{2}{2017^{100}-2}>\frac{2}{2017^{101}-2}\)
Nên 2017A > 2017B
Vậy A > B