K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2015

Ta có

100 x 100 = 100 x (99 + 1) = 100 x 99 + 100

99 x 101 = 99 x (100 + 1) = 99 x 100 + 99

Vì 100 > 99 nên 100 x 100 > 99 x 101

9 tháng 2 2022

Hong bé ơi.Bé hong follow anh mà đòi xin đáp án của anh à

9 tháng 2 2022

bucquabucquabucqua đùa nhau chắc

 

26 tháng 5 2017

Ta có: \(A=\frac{2017^{99}+1}{2017^{100}+1}\Rightarrow2017A=\frac{2017^{100}+2017}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)

\(B=\frac{2017^{100}+1}{2017^{101}+1}\Rightarrow2017B=\frac{2017^{101}+2017}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)

\(\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\)

\(\Rightarrow2017A>2017B\Rightarrow A>B\)

Vậy...

26 tháng 5 2017

Đặt \(A=\frac{2017^{99}+1}{2017^{100}+1}\)nên \(2017A=\frac{2017^{100}+2017}{2017^{100}+1}=\frac{2017^{100}+1+2016}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)

\(B=\frac{2017^{100}+1}{2017^{101}+1}\)nên \(2017B=\frac{2017^{101}+2017}{2017^{101}+1}=\frac{2017^{101}+1+2016}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)

Vì \(1=1;\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\)

Hay \(2017A>2017B\)nên \(A>B\)

Vây \(\frac{2017^{99}+1}{2017^{1001}+1}>\frac{2017^{100}+1}{2017^{101}+1}\)

18 tháng 7 2018

\(100^{99}+1< 100^{100}+1\)

=>A>B

19 tháng 7 2018

Ta có: Theo cách tính phân số dư , phân số nào có phần dư lớn hơn thì lớn hơn.

\(\frac{100^{^{100^{ }}}+1}{100^{99}+1}\)\(-1\)=\(\frac{100^{100}}{100^{99}+1}-100^{99}\)

\(\frac{100^{101}+1}{100^{100}+1}-1=\frac{100^{101}-100^{100}}{100^{100}+1}\)

Suy ra:A>B

\(\dfrac{1}{2022}\cdot A=\dfrac{2022^{100}+1}{2022^{100}+100}=1-\dfrac{99}{2022^{100}+100}\)

\(\dfrac{1}{2022}B=\dfrac{2022^{101}+1}{2022^{101}+100}=1-\dfrac{9}{2022^{101}+100}\)

2022^100+100<2022^101+100

=>-99/2022^100+100<-99/2022^101+100

=>A<B

13 tháng 3 2023

=> A/2022 = 2022^100+1/2022^100+2022 = 1- 2021/2022^100+2022

=> B/2022 = 2022^101+1/2022^101+2022 = 1- 2021/2022^101+2022

Nhận thấy 2022^101 + 2022 > 2022^100 + 2022

=> 2021/2022^101 + 2022 < 2021/2022^100 + 2022

=> B/2022 > A/2022 => B>A

Vậy A<B

2 tháng 6 2017

\(A=\frac{2017^{99}}{2017^{100}-2}\) 

=> \(2017A=\frac{2017^{100}}{2017^{100}-2}=\frac{2017^{100}-2+2}{2017^{100}-2}=1+\frac{2}{2017^{100}-2}\)

\(B=\frac{2017^{100}}{2017^{101}-2}\)

=>\(2017B=\frac{2017^{101}}{2017^{101}-2}=\frac{2017^{101}-2+2}{2017^{101}-2}=1+\frac{2}{2017^{101}-2}\)

Do \(\frac{2}{2017^{100}-2}>\frac{2}{2017^{101}-2}\)

Nên 2017A > 2017B

Vậy A > B