Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy số dưới lẫn số mũ của 536 lớn hơn 220 => 536>220
b)Ta có:\(99^{200}=99^{100}.99^{100}\)
\(9999^{100}=\left(99.101\right)^{100}=99^{100}.101^{100}\)
VÌ \(99^{100}.99^{100}< 99^{100}.101^{100}\)
Nên: \(99^{200}< 9999^{100}\)
c)Ta có: \(2^{150}=\left(2^3\right)^{50}=8^{50}\)
\(3^{100}=\left(3^2\right)^{50}=9^{50}\)
Vì \(8^{50}< 9^{50}\)nên : \(2^{150}< 3^{100}\)
d)\(\sqrt{26+2}=\sqrt{28}=5< x< 6\)
\(\sqrt{26}+\sqrt{2}=5< x< 6+1< y< 2\)
=> \(\sqrt{26+2}< \sqrt{26}+\sqrt{2}\)
Câu d mình l
\(2^{150}=2^{3.50}=\left(2^3\right)^{50}=8^{50}\)
\(3^{100}=3^{2.50}=\left(3^2\right)^{50}=9^{50}\)
\(8^{50}< 9^{50}nen2^{150}< 3^{100}\)
Ta có : \(3^{75}=3^{3.25}=\left(3^3\right)^{25}=27^{25}\)
\(2^{100}=2^{4.25}=\left(2^4\right)^{25}=16^{25}\)
Vì \(27>16\)
\(\Rightarrow\)\(27^{25}>16^{25}\)
\(\Rightarrow\)\(3^{75}>2^{100}\)
Vậy \(3^{75}>2^{100}\)
Tk nha ! Happy ♡♡♡
Ta có :
\(2^{100}=\left(2^4\right)^{25}=16^{25}\)
\(3^{75}=\left(3^3\right)^{25}=27^{25}\)
Có \(27>16\)
\(\Rightarrow\)\(27^{25}>16^{25}\)
Hay \(3^{75}>2^{100}\)
có: \(^{2^{150}=\left(2^3\right)^{50}=8^{50}}\)
\(3^{100}=\left(3^2\right)^{50}=9^{50}\)
Vì 8<9 nên \(8^{50}< 9^{50}\)
Vậy \(2^{150}< 3^{100}\)
Ta có : 2150 = (23)50 = 850 (1)
3100 = (32)50 = 950 (2)
Từ (1) và (2) => 850 < 950 vậy 2150 < 3100
Có : 2^150 = (2^3)^50 = 8^50
3^100 = (3^2)^50 = 9^50
Vì : 8^50 < 9^50 => 2^150 < 3^100
k mk nha
\(\Rightarrow\)\(2^{150}=2^{3\cdot}^{50}=\left(2\cdot3\right)^{50}=6^{50}\)
\(\Rightarrow\)\(3^{100}=3^{2\cdot50}=\left(3\cdot2\right)^{50}=6^{50}\)
\(\Rightarrow6^{50}=6^{50}\)
Vậy \(2^{150}=3^{100}\)
Chắc vậy đó . Nếu đúng k nha
Điền dấu " < " nhé bạn !
Học tốt nhé !
Đành dùng cách giảm bậc lũy thừa :v Cách này mới nghĩ ra:
\(2^{3^{100}}=2^{\left(3^{50}\right)^2}\) và \(3^{2^{100}}=3^{\left(2^{50}\right)^2}\)
Ta sẽ so sánh: \(2^{3^{50}}\) và \(3^{2^{50}}\)
Ta có: \(2^{3^{50}}=2^{\left(3^5\right)^{10}}\) và \(3^{2^{50}}=3^{\left(2^5\right)^{10}}\)
Ta sẽ so sánh: \(2^{3^5}\)và \(3^{2^5}\)
Lại có: \(2^{3^5}=2^{\left(3^1\right)^5}\) và \(3^{2^5}=3^{\left(2^1\right)^5}\)
Ta sẽ so sánh: \(2^3\) và \(3^2\)
Ta có: \(2^3=8< 9=3^2\) tức là: \(2^3< 3^2\)
Từ đó suy ra: \(2^{3^{100}}< 3^{2^{100}}\)