\(2017\times2018\times2019\)với\(2018^3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt 2018=a

\(VT=a\left(a-1\right)\left(a+1\right)=a\left(a^2-1\right)=a^3-a< a^3\)

Do đó: VT<VP

14 tháng 10 2019

2017.2019 = (2018-1)(2018+1) = 20182 -1 => a =1

b= 20183 +1 (???)

3 tháng 12 2017

Ta có \(A=\frac{2017-2018}{2017+2018}=\frac{\left(2017-2018\right)\left(2017+2018\right)}{\left(2017+2018\right)^2}=\frac{2017^2-2018^2}{2017^2+2018^2+2.2017.2018}< \frac{2017^2-2018^2}{2017^2+2018^2}=B\)

Vậy A<B

13 tháng 7 2017

A=24783,14746B=49566,29188

Vậy A<B

14 tháng 7 2017

Ta thấy \(A=\frac{2018-2017}{2018+2017}=\frac{2018^2-2017^2}{\left(2018+2017\right)^2}=\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}\)

Mà \(2018^2+2.2018.2017+2017^2>2018^2+2017^2\)

\(\Rightarrow\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}< \frac{2018^2-2017^2}{2018^2+2017^2}\)

Vậy A<B

6 tháng 10 2018

\(A=2019x2020\)và \(B=2020^2\)\(x2019^2\)

DỄ THÔI BN Ạ

B =2020 . 2020 . 2019 . 2019

SUY RA A <B

7 tháng 2 2020

Ta có: \(B=\frac{1}{16}+\frac{2}{16^2}+\frac{3}{16^3}+...+\frac{2018}{16^{2018}}\)

\(\Rightarrow16B=1+\frac{2}{16}+\frac{3}{16^2}+....+\frac{2018}{16^{2017}}\)

\(\Rightarrow16B-B=15B=1+\frac{1}{16}+\frac{1}{16^2}+\frac{1}{16^3}+...+\frac{1}{16^{2017}}-\frac{2018}{16^{2018}}\)

Mà: \(A=1+\frac{1}{16}+\frac{1}{16^2}+\frac{1}{16^3}+...+\frac{1}{16^{2017}}\)

\(\Rightarrow16A=16+1+\frac{1}{16}+\frac{1}{16^2}+...+\frac{1}{16^{2016}}\)

\(\Rightarrow16A-A=16-\frac{1}{16^{2017}}\)

\(\Rightarrow A=\frac{16-\frac{1}{16^{2017}}}{15}\)

\(\Rightarrow15B=\frac{16-\frac{1}{16^{2017}}}{15}-\frac{2018}{16^{2018}}\)

\(\Rightarrow15B< \frac{16}{15}\)

\(\Rightarrow B< \frac{16}{15^2}< 1\)

\(\Rightarrow B^{2017}>B^{2018}\)

7 tháng 2 2020

Cảm ơn bạn nhiều :D

14 tháng 8 2017

$A=\dfrac{2018.2017-1}{2016.2018+2017}$

$=>A={2018.2016+2018-1}{2016.2018+2017}$

$=>A={2018.2016+2017}{2016.2018+2017}$

$=>A=1$

14 tháng 8 2017

\(A=\dfrac{2018.2017-1}{2018.2016+2017}\)

\(A=\dfrac{2018.\left(2016+1\right)-1}{2018.2016+2017}\)

\(A=\dfrac{2018.2016+2018-1}{2018.2016+2017}\)

\(A=\dfrac{2018.2016+2017}{2018.2016+2017}=1\)

\(B=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}+\dfrac{1}{2187}\)

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^7}\)

\(\Rightarrow3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^6}\)

\(\Rightarrow3B-B=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^6}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^7}\right)\)

\(\Rightarrow2B=1-\dfrac{1}{3^7}\Rightarrow B=\dfrac{1-\dfrac{1}{2187}}{2}=\dfrac{1093}{2187}\)

Chúc bạn học tốt!!!

14 tháng 10 2019

\(A=\left(2018-2016\right)\left(2018+2016\right)=2.4034\)

\(B=\left(2019-2017\right)\left(2019+2017\right)=2.4036\)

Ta thấy 4034 < 4036 nên A < B.

14 tháng 10 2019

\(A=2018^2-2016^2=\left(2018+2016\right)\left(2018-2016\right)=4034.2\)

\(B=2019^2-2017^2=\left(2019+2017\right)\left(2019-2017\right)=4036.2\)

Vì 4036 > 4034 nên 4036 . 2 > 4034 . 2 nên B > A