Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)
\(=\dfrac{3}{\dfrac{2\left(2+1\right)}{2}}+\dfrac{3}{\dfrac{3\left(3+1\right)}{2}}+...+\dfrac{3}{\dfrac{2022\left(2022+1\right)}{2}}\)
\(=\dfrac{6}{2\left(2+1\right)}+\dfrac{6}{3\left(3+1\right)}+...+\dfrac{6}{2022\cdot2023}\)
\(=\dfrac{6}{2\cdot3}+\dfrac{6}{3\cdot4}+...+\dfrac{6}{2022\cdot2023}\)
\(=6\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2022\cdot2023}\right)\)
\(=6\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(=6\cdot\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)=6\cdot\dfrac{2021}{4046}=\dfrac{12126}{4046}< 3\)
mà \(3< \dfrac{10}{3}\)
nên \(M< \dfrac{10}{3}\)
\(\dfrac{1}{2}-\dfrac{5}{12}x=\dfrac{2}{3}\)
\(\dfrac{5}{12}x=\dfrac{1}{2}-\dfrac{2}{3}=\dfrac{3}{6}-\dfrac{4}{6}\)
\(\dfrac{5}{12}x=\dfrac{-1}{6}\)
\(x=\dfrac{-1}{6}:\dfrac{5}{12}=\dfrac{-1}{6}.\dfrac{12}{5}\)
\(x=\dfrac{-2}{5}\)
a) Ta có: a = -1/8 = -9/72
b = 2/-9 = -2/9 = -16/72
Ta thấy: -9 > -16 => -9/72 > -16/72
hay a > b
Vậy a > b
b) Ta có: a = 12/15 = 4/5= 16/20
b = -( -3/4 ) = 3/4= 15/20
Ta thấy: 16 > 15 => 16/20 > 15/20
hay a > b
Vậy a > b
c) Ta có: a = -2/3 = -40/60
b = -0,65 = -13/20 = -39/60
Ta thấy: -40 < -39 => -40/60 < -39/60
hay a < b
Vậy a < b
d) Ta có: a = -21/3 = -7
b = -413% = -4,13
Ta thấy: -7 < -4,13
=> a < b
Vậy a < b
Chuk bn hok tốt!
a) \(\left(x-\frac{1}{2}\right)^4=\frac{1}{81}\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^4=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{1}{3}\\x-\frac{1}{2}=\frac{-1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{6}\\x=\frac{1}{6}\end{cases}}\)
Vậy ...
Mẫu số = 2015/1 + 2014/2 + 2013/3 + ... + 1/2015
= (1 + 1 + ... + 1) + 2014/2 + 2013/3 + ... + 1/2015
2015 số 1
= (2014/2 + 1) + (2013/3 + 1) + ... + (1/2015 + 1) + 1
= 2016/2 + 2016/3 + ... + 2016/2015 + 2016/2016
= 2016 × (1/2 + 1/3 + ... + 1/2015 + 1/2016)
=> phân số đề bài cho = 1/2016
Đặt : A = 1 + 2 + 2^2 + 2^3 + ... + 2^2016
=> 2A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^2017
=> 2A - A = ( 2 + 2^2 + 2^3 + 2^4 + ... + 2^2017 ) - ( 1 + 2 + 2^2 + 2^3 + ... + 2^2016 )
=> A = 2^2017 - 1
=> A < 2^2017
Vậy A < 2^2017
Ta đặt A = 1 + 2 + 22 + 23 + ....+ 22016
=> 2A = 2 + 22 + 23 + ...+22017
=> 2A - A = (2+22+23+...+22017) - (1+2+22+...+22016 )
=> A = 22017 - 1
Mà 22017 - 1 < 22017
=> A < 22017
Vậy 1 + 2 + 22 + ...+ 22016 < 22017