Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-2019}{2019}=-1\)
\(\dfrac{-2021}{2020}=-1,004\)
\(\Rightarrow\dfrac{-2019}{2019}>\dfrac{-2021}{2020}\)
\(\frac{2020}{2019}\)bé hơn \(\frac{2021}{2020}\)
vì 2020 bé hơn 2021
2019 nhỏ hơn 2020
a) Ta có:
2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122 020+122 021
2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122 019+122 020
Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122 019+122 020
−(12+122+123+...+122020+122021)−12+122+123+...+122 020+122 021
Do đó A=1−122021<1�=1−122021<1.
Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.
Vậy A < B.
\(x=\frac{2019^{2020}+1}{2019^{2019}+1}>\frac{2019^{2020}+1+2018}{2019^{2019}+1+2018}=\frac{2019^{2020}+2019}{2019^{2019}+2019}=\frac{2019\left(2019^{2019}+1\right)}{2019\left(2019^{2018}+1\right)}=\frac{2019^{2019}+1}{2019^{2018}+1}\)(1)
\(y=\frac{2019^{2019}+2020}{2019^{2018}+2020}< \frac{2019^{2019}+2020-2019}{2019^{2018}+2020-2019}=\frac{2019^{2019}+1}{2019^{2018}+1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x>y\)
x > y
'-'
Có \(x=\frac{2020}{2019}\) và \(y=\frac{2021}{2020}\). Xét phần hơn
Có \(x-1=\frac{2020}{2019}-1=\frac{2020}{2019}-\frac{2019}{2019}=\frac{1}{2019}\)
Có \(y-1=\frac{2021}{2020}-1=\frac{2021}{2020}-\frac{2020}{2020}=\frac{1}{2020}\)
Vì \(\frac{1}{2019}>\frac{1}{2020}\Leftrightarrow\frac{2020}{2019}>\frac{2021}{2020}\Rightarrow x>y\)