Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Câu8\)
\(a,A=\dfrac{1}{2}x^3\times\dfrac{8}{5}x^2=\left(\dfrac{1}{2}\times\dfrac{8}{5}\right)x^{3+2}=\dfrac{4}{5}x^5\)
b, \(P\left(0\right)=0^2-5.0+6=6\\ P\left(2\right)=2^2-5.2+6=0\)
Câu 9
\(a,A\left(x\right)+B\left(x\right)=5x^3+x^2-3x+5+5x^3+x^2+2x-3\\ =\left(5x^3+5x^3\right)+\left(x^2+x^2\right)+\left(-3x+2x\right)+\left(5-3\right)\\ =10x^3+2x^2-x+2\)
\(b,H\left(x\right)=A\left(x\right)-B\left(x\right)=5x^3+x^2-3x+5-\left(5x^3+x^2+2x-3\right)\\ =5x^3+x^2-3x+5-5x^3-x^2-2x+3\\ =\left(5x^3-5x^3\right)+\left(x^2-x^2\right) +\left(-3x-2x\right)+\left(5+3\right)\\ =-5x+8\)
\(H\left(x\right)=0\\ \Rightarrow-5x+8=0\\ \Rightarrow x=\dfrac{8}{5}\)
vậy nghiệm của đa thức là \(x=\dfrac{8}{5}\)
+) Với a , b cùng dấu , ta có :
\(\frac{a}{b}=\frac{-a}{-b}>0\)với mọi a , b thuộc Z ; b khác 0
+) Với a , b khác dấu ta có :
\(\hept{\begin{cases}\frac{a}{-b}< 0\\\frac{-a}{b}< 0\end{cases}}\)với mọi a , b thuộc Z ; b khác 0
Vậy với a,b cùng dấu thì \(\frac{a}{b}>0\); với a,b khác dấu thì \(\frac{a}{b}< 0\)
1.a) Ta có:
\(\frac{18}{-25}=-\frac{18.12}{25.12}=-\frac{216}{300}< -\frac{213}{300}\)
Vậy \(-\frac{213}{300}>\frac{18}{-25}\)
b) Ta có:
\(0,75>0>-\frac{3}{4}\)
Vậy \(0,75>-\frac{3}{4}\)
2, * Khi a, b cùng dấu thì \(\frac{a}{b}>0\)
* Khi a, b khác dấu thì \(\frac{a}{b}< 0\)
Đây là kiến thức cơ bản !
Với a, b ∈ Z; b ≠ 0 thì:
- Khi a, b cùng dấu thì > 0
- Khi a, b khác dấu thì < 0
Tổng quát: Số hữu tỉ (a, b ∈ Z; b ≠ 0) > 0 nếu a, b cùng dấu; < 0 nếu a, b khác dấu; = 0 nếu a = 0.
Nếu a,b cùng dấu thì \(\dfrac{a}{b}\ge0\)
Nếu a,b khác dấu thì \(\dfrac{a}{b}< 0\)
\(\left[{}\begin{matrix}a\ge0,b>0\\a\le0,b< 0\end{matrix}\right.\Rightarrow\dfrac{a}{b}\ge0\\ \left[{}\begin{matrix}a\ge0,b< 0\\a\le0,b>0\end{matrix}\right.\Rightarrow\dfrac{a}{b}\le0\)
A và B cùng dấu nên AB>0
=>\(2x^3\cdot\left(-3\right)x^4>0\)
=>\(x^7< 0\)
=>x<0
có nhân 2 với -3 k ạ