\(\left(1+\frac{1}{2}\right)+\lef...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

\(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{n^2+3n}\right)\)

\(=\left(1+1+1\right)+\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}\right)+\left(1+1+1+...+1\right)\)

\(=3+\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}\right)+\left(1+1+1+...+1\right)\)

Có: \(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}>0\)

\(1+1+1+...+1>0\)

=> \(3+\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}\right)+\left(1+1+1+...+1\right)>3\)

Hay \(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{n^2+3n}\right)>3\)

20 tháng 5 2016

 Với n =1 thì A < 3. Vậy ta phải đi chứng minh A < 3

Giả sử A < 3 đúng với n = k. Ta có:

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{k^2+3k}\right)<3$A=(1+12 )+(1+15 )+(1+19 )+...+(1+2k2+3k )<3

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(\frac{k^2+3k+2}{k\left(k+3\right)}\right)$A=(1+12 )+(1+15 )+(1+19 )+...+(k2+3k+2k(k+3) )

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) 

Ta phải đi chứng minh A < 3 đúng với n = k +1 tức là phải chứng minh:

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\left(1+\frac{2}{\left(k+1\right)^2+3\left(k+1\right)}\right)$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) +(1+2(k+1)2+3(k+1) )  $<3+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}$<3+(k+2)(k+3)(k+1)(k+4) 

Ta sẽ có:

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\left(1+\frac{2}{k^2+2k+1+3k+3}\right)$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) +(1+2k2+2k+1+3k+3 )

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\frac{k^2+5k+6}{k^2+5k+4}$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) +k2+5k+6k2+5k+4 

$A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}$A=(1+12 )+(1+15 )+(1+19 )+...+(k+1)(k+2)k(k+3) +(k+2)(k+3)(k+1)(k+4)  $<3+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}$<3+(k+2)(k+3)(k+1)(k+4) 

Vậy A đúng với n = k + 1 thì A đúng với n = k

Vậy A < 3 là điều phải chứng minh.

(Phương pháp quy nạp toán học)

20 tháng 5 2016

 Với n =1 thì A < 3. Vậy ta phải đi chứng minh A < 3

Giả sử A < 3 đúng với n = k. Ta có:

$$

$$

$$

Ta phải đi chứng minh A < 3 đúng với n = k +1 tức là phải chứng minh:

$$  $$

Ta sẽ có:

$$

$$

$$ $$

Vậy A đúng với n = k + 1 thì A đúng với n = k

Vậy A < 3 là điều phải chứng minh.

(Phương pháp quy nạp toán học)

 Với n =1 thì A < 3. Vậy ta phải đi chứng minh A < 3

Giả sử A < 3 đúng với n = k. Ta có:

$$

$$

$$

Ta phải đi chứng minh A < 3 đúng với n = k +1 tức là phải chứng minh:

$$  $$

Ta sẽ có:

$$

$$

$$ $$

Vậy A đúng với n = k + 1 thì A đúng với n = k

Vậy A < 3 là điều phải chứng minh.

(Phương pháp quy nạp toán học)

20 tháng 5 2016

 Với n =1 thì A < 3. Vậy ta phải đi chứng minh A < 3

Giả sử A < 3 đúng với n = k. Ta có:

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{k^2+3k}\right)< 3\)

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(\frac{k^2+3k+2}{k\left(k+3\right)}\right)\)

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}\)

Ta phải đi chứng minh A < 3 đúng với n = k +1 tức là phải chứng minh:

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\left(1+\frac{2}{\left(k+1\right)^2+3\left(k+1\right)}\right)\)  \(< 3+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}\)

Ta sẽ có:

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\left(1+\frac{2}{k^2+2k+1+3k+3}\right)\)

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\frac{k^2+5k+6}{k^2+5k+4}\)

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\frac{\left(k+1\right)\left(k+2\right)}{k\left(k+3\right)}+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}\) \(< 3+\frac{\left(k+2\right)\left(k+3\right)}{\left(k+1\right)\left(k+4\right)}\)

Vậy A đúng với n = k + 1 thì A đúng với n = k

Vậy A < 3 là điều phải chứng minh.

(Phương pháp quy nạp toán học)

\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)

\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)

6 tháng 6 2017

B = \(\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right)...\left(\frac{1}{100}-1\right)\)

B = \(\frac{-3}{4}.\frac{-8}{9}...\frac{-99}{100}\)

B = \(-\left(\frac{3}{4}.\frac{8}{9}...\frac{99}{100}\right)\)

B = \(-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{9.11}{10.10}\right)\)

B = \(-\left(\frac{1.2...9}{2.3...10}.\frac{3.4...11}{2.3...10}\right)\)

B = \(-\left(\frac{1}{10}.\frac{11}{2}\right)\)

B = \(\frac{-11}{20}\)

Vì  \(\frac{11}{20}>\frac{11}{21}\)nên \(\frac{-11}{20}< \frac{-11}{21}\)

Vậy \(B< \frac{-11}{21}\)

22 tháng 11 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} đây là biểu thức gì\)

3 tháng 5 2018

\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{400}-1\right)\)

\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{400}\right)\)

\(-A=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{399}{400}\)

\(-A=\frac{1\cdot3}{2\cdot2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot...\cdot\frac{19.21}{20.20}\)

\(-A=\frac{1\cdot2\cdot3\cdot...\cdot19}{2\cdot3\cdot4\cdot...\cdot20}\cdot\frac{3\cdot4\cdot5\cdot...\cdot21}{2\cdot3\cdot4\cdot...\cdot20}\)

\(-A=\frac{1}{20}\cdot\frac{21}{2}=\frac{21}{40}>\frac{20}{40}=\frac{1}{2}\)

\(-A>\frac{1}{2}\Rightarrow A< \frac{1}{2}\)

21 tháng 6 2020

\(P=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{2499}{2500}\)

\(P=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)

\(P=\frac{\left(1.2.3...49\right)\left(3.4.5...51\right)}{\left(2.3.4...50\right)\left(2.3.4...50\right)}\)

\(P=\frac{1.51}{50.2}\)

\(P=\frac{51}{100}>\frac{1}{2}\)

Kết luận: \(P>\frac{1}{2}\)