Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+....+\frac{1}{\sqrt{100}}\)
\(\Leftrightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>100.\frac{1}{\sqrt{100}}=10.\)
Xét A-B=5-\(\sqrt{10}\)(2/3+1)= 5-\(\frac{5\sqrt{10}}{3}\)=5(1-\(\frac{\sqrt{10}}{3}\)) < 0
Vậy A<B
\(2\sqrt{10}=\sqrt{4\cdot10}=\sqrt{40}>\sqrt{36}=6\Rightarrow2\sqrt{10}>6\)
\(\Rightarrow15-2\sqrt{10}< 15-6=9\Rightarrow\frac{15-2\sqrt{10}}{3}< \frac{9}{3}=3\)mà \(3=\sqrt{9}< \sqrt{10}\Rightarrow\frac{15-2\sqrt{10}}{3}< \sqrt{10}\)
Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
..........
..........
..........
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100=\frac{100}{10}=10\)
Vậy \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)
Ta có
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
........................................
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
=> \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)(100 số\(\frac{1}{10}\)) >10
a/ \(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)
\(\sqrt{45}< \sqrt{49}=7\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
b/ Ta có:
\(\sqrt{n}< \sqrt{n+1}\)
\(\Rightarrow2\sqrt{n}< \sqrt{n+1}+\sqrt{n}\)
\(\Rightarrow\dfrac{1}{\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)
Áp dụng vào bài toán được
\(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{36}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{37}-\sqrt{36}\right)\)
\(=2\left(\sqrt{37}-1\right)>6\)
mình chỉ giải được phần này thôi
b.A = \(\sqrt{17}\)+\(\sqrt{26}\)+ 1 > \(\sqrt{16}\)+\(\sqrt{25}\)+ 1 = 4 + 5 +1 = 10
B = \(\sqrt{99}\)<\(\sqrt{100}\)= 10
=> A > B
\(\sqrt{\frac{10}{17}}va\frac{3}{4}\)
Ta có \(\frac{10}{17}>\frac{9}{16}\)
\(\Rightarrow\sqrt{\frac{10}{17}}>\sqrt{\frac{9}{16}}\)
\(\Rightarrow\sqrt{\frac{10}{17}}>\frac{3}{4}\)
Học tốt