Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mít cứ bình phương lên là ok
(2\(\sqrt{7}\))2 =28 (1)
(3\(\sqrt{3}\))2 =27 (2)
vậy (1) > (2)
cứ thế mà làm là hết mít
Ta so sánh: \(\sqrt{3}-\sqrt{2}\) và \(\sqrt{7}-\sqrt{6}\)
\(\sqrt{3}-\sqrt{2}=\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=\frac{3-2}{\sqrt{3}+\sqrt{2}}=\frac{1}{\sqrt{3}+\sqrt{2}}\)
\(\sqrt{7}-\sqrt{6}=\frac{\left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}{\sqrt{7}+\sqrt{6}}=\frac{7-6}{\sqrt{7}+\sqrt{6}}=\frac{1}{\sqrt{7}+\sqrt{6}}\)
Vì \(\sqrt{3}+\sqrt{2}< \sqrt{7}+\sqrt{6}\)
nên \(\frac{1}{\sqrt{3}+\sqrt{2}}>\frac{1}{\sqrt{7}+\sqrt{6}}\)
\(\Rightarrow\sqrt{3}-\sqrt{2}>\sqrt{7}-\sqrt{6}\)
\(\Rightarrow\sqrt{3}+\sqrt{6}>\sqrt{7}+\sqrt{2}\) hay x > y
x =
\(\sqrt{3}\)= 1,732050808
\(\sqrt{6}\)= 2,449489743
1,732050808+2,449489743 = 4,181540551
y =
\(\sqrt{2}\)= 1,414213562
\(\sqrt{7}\)= 2,645751311
1,414213562+2,645751311 = 4,059964873
Vì 4,181540551 > 4,059964873 nên x > y
k mình nha
Chúc bạn học giỏi
Mình cảm ơn bạn nhiều
b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)
Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)
Từ biểu thức (1) và biểu thức (2)
=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)
a) Ta có \(\sqrt{170}>\sqrt{169}\\\)
mà \(\sqrt{169}=13\)
=> \(\sqrt{170}>13\)
b) Ta có \(\sqrt{6}< \sqrt{9}\)
mà \(\sqrt{9}=3\)
=> \(\sqrt{6}< 3\)
c) ta có \(\sqrt{226}>\sqrt{225}\)
mà \(\sqrt{225}=15\)
=>\(\sqrt{226}>15\)
d) \(\sqrt{12}>\sqrt{7}\)
e)
Ta có\(\sqrt{150}< \sqrt{180}\)
mà \(\sqrt{150}=5\sqrt{6}\)
\(\sqrt{180}=6\sqrt{5}\)
=> \(5\sqrt{6}< 6\sqrt{5}\)
a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)
\(7^2=49=7+42\)
mà \(15+2\sqrt{105}< 42\)
nên \(\sqrt{7}+\sqrt{15}< 7\)
b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)
\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)
mà \(2\sqrt{22}< 15+10\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)
a ) \(\sqrt{37}\) và \(6\)
Ta có : \(6=\sqrt{36}\)
mà \(\sqrt{36}< \sqrt{37}\)
\(\Rightarrow\sqrt{37}>6\)
b ) \(2\sqrt{3}\) và \(3\sqrt{2}\)
Ta có : \(2\sqrt{3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{18}\)
mà : \(\sqrt{12}< \sqrt{18}\)
\(\Rightarrow2\sqrt{3}< 3\sqrt{2}\)
c ) \(\sqrt{63}+\sqrt{35}\) và \(14\)
Ta có : \(\sqrt{63}< \sqrt{64}=8\) và \(\sqrt{35}< \sqrt{36}=6\)
\(\Rightarrow\sqrt{63}+\sqrt{35}< 8+6=14\)