\(\sqrt{24}+\sqrt{45}và12\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2015

\(\text{ta có: }\sqrt{24}+\sqrt{45}<\sqrt{25}+\sqrt{49}=5+7=12\)

\(\text{Vậy }\sqrt{24}+\sqrt{45}<12\)

27 tháng 8 2017

cái đầu tiên lớn hơn

cái sau be hon

27 tháng 8 2017

CÁI ĐẦU TIÊN LỚN HƠN CÁI THỨ 2

                  DỄ THẾ

24 tháng 8 2019

\(\sqrt{24}< \sqrt{25}=5;\sqrt{45}< \sqrt{49}=7\)

\(->\sqrt{24}+\sqrt{45}< 5+7=12\)

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

căn 24< căn 25 =5 :

căn 45<căn 49 =7

=> căn 24+ căn 45 < căn 25+ căn 49 =5+7=12

5 tháng 6 2019

a) \(2\sqrt{3}=\sqrt{12}\)

\(3\sqrt{2}=\sqrt{18}\)

Vì 12<18 => \(\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)

b) \(12=5+7=\sqrt{25}+\sqrt{49}>\sqrt{24}+\sqrt{45}\)

27 tháng 9 2017

cả hai bài đều giải bằng cách  bình phương cả hai vế rồi so sánh

27 tháng 9 2017

So sánh từng vế:

\(\sqrt{15}+1=4,872983346\)

\(\sqrt{24}=4,898979486\)

Vậy: \(\sqrt{15}+1< \sqrt{24}\)

\(\sqrt{2002}+\sqrt{2004}=89,50977321\)

\(2\sqrt{2005}=89,5545271\)

Vậy \(\sqrt{2002}+\sqrt{2004}< 2\sqrt{2005}\)

P/s: Ko chắc

13 tháng 8 2017

B=\(\sqrt{17}+\sqrt{5}+1\)>\(\sqrt{16}+\sqrt{4}+1\)=4+2+1=7=\(\sqrt{49}\)>\(\sqrt{45}\)

Vậy B>C

30 tháng 8 2020

Ta thấy : \(34>27\Rightarrow\sqrt[3]{34}>\sqrt[3]{27}=3\)

\(45>4\Rightarrow\sqrt{45}>\sqrt{4}=2\)

Do đó : \(\sqrt[3]{34}+\sqrt{45}>2+3=5\)(1)

Mặt khác : \(109< 125\Rightarrow\sqrt[3]{109}< \sqrt[3]{125}=5\) (2)

Từ (1) và (2) suy ra \(\sqrt[3]{34}+\sqrt{45}>\sqrt[3]{109}\)

1 tháng 9 2019

a) 

Ta có:

\(\left(\sqrt{26}+\sqrt{5}\right)^2=26+2\sqrt{26}\sqrt{5}+5\)

\(=31+2\sqrt{130}\)(1)

Mặt khác: \(\left(\sqrt{7}\right)^2=7\) (2)

Từ (1) và (2) =>\(\sqrt{26}+\sqrt{5}>\sqrt{7}\)

13 tháng 9 2019

a) \(\sqrt{26}+\sqrt{5}< \sqrt{25}+\sqrt{4}=5+2=7\)

b) \(\sqrt{8}+\sqrt{24}< \sqrt{9}+\sqrt{25}=3+5=8\)

\(\sqrt{65}>\sqrt{64}=8\)

\(\Rightarrow\sqrt{8}+\sqrt{24}< \sqrt{65}\)