Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{2006}-\sqrt{2005}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Mà : \(\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}-\sqrt{2006}}\)
Nến : \(\sqrt{2006}-\sqrt{2005}>\sqrt{2007}-\sqrt{2006}\)
\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)
\(\left(\sqrt{2005}+\sqrt{2007}\right)^2=4012+2\sqrt{2005.2007}\)
\(=4012+2\sqrt{\left(2016-1\right)\left(2016+1\right)}=4012+2\sqrt{2016^2-1}\)
\(\left(2\sqrt{2006}\right)^2=4012+4012=4012+2\sqrt{2016^2}\)
=>\(\left(\sqrt{2015}+\sqrt{2017}\right)^2< \left(2\sqrt{2016}\right)^2\Rightarrow\sqrt{2015}+\sqrt{2017}< 2\sqrt{2016}\)
Ta có: \(\sqrt{2006}-\sqrt{2005}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Mà: \(\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Nên: \(\sqrt{2006}-\sqrt{2005}>\sqrt{2007}-\sqrt{2006}\)
=>\(\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)
a/ giả sử \(\sqrt{7}-\sqrt{2}< 1\)
\(\Leftrightarrow\sqrt{7}< 1+\sqrt{2}\)
\(\Leftrightarrow 7< 1+2\sqrt{2}+2\)
\(\Leftrightarrow4< 2\sqrt{2}\Leftrightarrow16< 8\left(sai\right)\)
vậy \(\sqrt{7}-\sqrt{2}>1\)
câu b, c bạn làm tương tụ nhé , giả sử một đẳng thức tạm, sau đó bình phương lên rồi làm theo như trên là được nha
Bài này cũng dễ
a, \(\sqrt{7}-\sqrt{2}\) lớn hơn \(1\) . Vì
\(\sqrt{7}-\sqrt{2}=1,231537749\)
\(1=1\)
b, \(\sqrt{8}+\sqrt{5}\) bé hơn \(\sqrt{7}+\sqrt{6}\) . Vì
\(\sqrt{8}+\sqrt{5}=5,064495102\)
\(\sqrt{7}+\sqrt{6}=5,095241054\)
c, \(\sqrt{2005}+\sqrt{2007}\) lớn hơn \(\sqrt{2006}\) . Vì
\(\sqrt{2005}+\sqrt{2007}=89,57677992\)
\(\sqrt{2006}=44,78839135\)
Bài 2:
\(D=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{120\sqrt{121}+121\sqrt{120}}\)
Với mọi \(n\inℕ^∗\)ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{[\left(n+1\right)\sqrt{n}]^2-\left(n\sqrt{n+1}\right)^2}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\left(\sqrt{n}+1\right)}{n\left(n+1\right)\left(n+1-n\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}}{n\left(n+1\right)}-\frac{n\sqrt{n+1}}{n\left(n+1\right)}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(\Rightarrow D=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}+....+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}\)
\(=1-\frac{1}{\sqrt{121}}=\frac{10}{11}\)
Bài 1: chắc lại phải "liên hợp" gì đó rồi:V
\(\sqrt{2009}-\sqrt{2008}=\frac{1}{\sqrt{2009}+\sqrt{2008}}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Đó \(\sqrt{2009}+\sqrt{2008}>\sqrt{2007}+\sqrt{2006}\)
Nên \(\sqrt{2009}-\sqrt{2008}< \sqrt{2007}-\sqrt{2006}\)
Tổng quát ta có bài toán sau, với So sánh \(\sqrt{n}-\sqrt{n-1}\text{ và }\sqrt{n-2}-\sqrt{n-3}\)
Với \(n\ge3\). Lời giải xin mời các bạn:)
\(A=\sqrt{2007}-\sqrt{2006}=\frac{\left(\sqrt{2007}-\sqrt{2006}\right)\left(\sqrt{2007}+\sqrt{2006}\right)}{\left(\sqrt{2007}+\sqrt{2006}\right)}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)(1)
\(B=\sqrt{2008}-\sqrt{2007}=\frac{\left(\sqrt{2008}-\sqrt{2007}\right)\left(\sqrt{2008}+\sqrt{2007}\right)}{\left(\sqrt{2008}+\sqrt{2007}\right)}=\frac{1}{\sqrt{2008}+\sqrt{2007}}\)(2)
Từ 1 và 2 => \(\frac{1}{\sqrt{2007}+\sqrt{2006}}>\frac{1}{\sqrt{2008}+\sqrt{2007}}\)
hay \(\sqrt{2007}-\sqrt{2006}>\sqrt{2008}-\sqrt{2007}\)
P/s tham khảo nha
Easy
Ta có:
\(\sqrt{2006}-\sqrt{2005}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
Tương tự cũng có: \(\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
Dễ thấy: \(\sqrt{2005}+\sqrt{2006}< \sqrt{2007}+\sqrt{2008}\)
\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
Easy
Ta có:
\(\sqrt{2006}-\sqrt{2005}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
Tương tự cũng có: \(\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
Dễ thấy: \(\sqrt{2005}+\sqrt{2006}< \sqrt{2007}+\sqrt{2008}\)
\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
Áp dụng \(\sqrt{\frac{a+b}{2}}>\frac{\sqrt{a}+\sqrt{b}}{2}\) được \(\sqrt{\frac{2007+2005}{2}}>\frac{\sqrt{2005}+\sqrt{2007}}{2}\Rightarrow2\sqrt{2006}>\sqrt{2005}+\sqrt{2007}\)
\(A=\sqrt{2005}+\sqrt{2007}\Rightarrow A^2=\left(\sqrt{2005}+\sqrt{2007}\right)^2=2005+2007+2\sqrt{2005\cdot2007}=4012+2\sqrt{\left(2006-1\right)\left(2006+1\right)}=4012+2\sqrt{2006^2-1}\)
\(B=2\sqrt{2006}\Rightarrow B^2=\left(2\sqrt{2006}\right)^2=4\cdot2006=2\cdot2006+2\cdot2006=4012+2\sqrt{2006^2}\)
Ta thấy \(4012=4012\) và \(\sqrt{2006^2-1}< \sqrt{2006^2}\)
nên \(A^2< B^2\)\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{\sqrt{2007}-\sqrt{2006}}{2007-2006}=\frac{\sqrt{2007}-\sqrt{2006}}{\left(\sqrt{2007}-\sqrt{2006}\right)\left(\sqrt{2007}+\sqrt{2006}\right)}\)
\(=\frac{1}{\sqrt{2007}+\sqrt{2006}}< \frac{1}{\sqrt{2006}+\sqrt{2006}}=\frac{1}{2\sqrt{2006}}\)
Vậy \(\sqrt{2007}-\sqrt{2006}< \frac{1}{2\sqrt{2006}}\)
Bạn áp dùng biểu thức liên hợp là được
Ta có :
\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)(1)
\(\frac{1}{2\sqrt{2006}}=\frac{1}{\sqrt{2006}+\sqrt{2006}}\)(2)
Từ (1)(2)=>\(\frac{1}{\sqrt{2007}+\sqrt{2006}}< \frac{1}{\sqrt{2006}+\sqrt{2006}}\)
\(\Rightarrow\sqrt{2007}-\sqrt{2006}>\frac{1}{2\sqrt{2006}}\)