Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{2004}}\)
Xét số hạng tổng quát: \(\frac{1}{\sqrt{n}}\) ta có:
\(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}> \frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2(\sqrt{n+1}-\sqrt{n})}{(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}=2(\sqrt{n+1}-\sqrt{n})\)
Do đó:
\(\frac{1}{\sqrt{1}}> 2(\sqrt{2}-\sqrt{1})\)
\(\frac{1}{\sqrt{2}}> 2(\sqrt{3}-\sqrt{2})\)
\(\frac{1}{\sqrt{3}}> 2(\sqrt{4}-\sqrt{3})\)
............
\(\frac{1}{\sqrt{2004}}> 2(\sqrt{2005}-\sqrt{2004})\)
Cộng theo vế:
$A>2(\sqrt{2005}-1)>86$
Vậy..........
B=\(\sqrt{17}+\sqrt{5}+1\)>\(\sqrt{16}+\sqrt{4}+1\)=4+2+1=7=\(\sqrt{49}\)>\(\sqrt{45}\)
Vậy B>C
a/ \(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)
\(\sqrt{45}< \sqrt{49}=7\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
b/ Ta có:
\(\sqrt{n}< \sqrt{n+1}\)
\(\Rightarrow2\sqrt{n}< \sqrt{n+1}+\sqrt{n}\)
\(\Rightarrow\dfrac{1}{\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)
Áp dụng vào bài toán được
\(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{36}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{37}-\sqrt{36}\right)\)
\(=2\left(\sqrt{37}-1\right)>6\)
\(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=8\)
\(\sqrt{45}< \sqrt{64}=8\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)