Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có 290>289
<=> \(\sqrt{290}\) > \(\sqrt{289}\)
<=> \(\sqrt{290}\) > 17
Vậy ..........
\(a,290>289\)
\(\Rightarrow\sqrt{290}>\sqrt{289}\)
\(\Rightarrow\sqrt{290}>17\)
\(b,\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 3+4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
\(A=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)
\(A< \sqrt{2,25}+\sqrt{6,25}+\sqrt{12,25}+\sqrt{20,25}+\sqrt{30,25}+\sqrt{42,25}=24=B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
\(\sqrt{2}+\sqrt{6}+\sqrt{12}+...+\sqrt{110}\)\(=\sqrt{1.2}+\sqrt{2.3}+\sqrt{3.4}+...+\sqrt{10.11}\)
\(< \frac{1+2}{2}+\frac{2+3}{2}+\frac{3+4}{2}+...+\frac{10+11}{2}\)\(=\frac{1}{2}\left[\left(1+2+3+...+10\right)+\left(2+3+4+...+11\right)\right]\)\(=\frac{1}{2}\left(\frac{11.10}{2}+\frac{13.10}{2}\right)=\frac{1}{2}\left(55+65\right)=60\)
Vậy \(\sqrt{2}+\sqrt{6}+\sqrt{12}+...+\sqrt{110}< 60.\)
\(\sqrt{12}<\sqrt{12,25}=3,5\)
\(\sqrt{20}<\sqrt{20,25}=4,5\)
\(\sqrt{30}<\sqrt{30,25}=5,5\)
\(\sqrt{42}<\sqrt{42,25}=6,5\)
Suy ra:\(\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)<3,5+4,5+5,5+6,5=20
Vậy biểu thức <20
\(\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}<20\)