Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta ví dụ a/b = 5/4
ta có 5/4 ... 5+1/4+1
= 5/4 ... 6/5
ta quy đồng được :5/4 = 25/20 ; 6/5 = 24/20
=> a/b > a+m/b+m
Ta có : a/b = a*(b+m)/b*(b+m) = ab+am/b*(b+m)
a+m/b+m = (a+m)*b/(b+m)*b = ab+bm/b*(b+m)
Vì a/b > 1 => a > b hay am > bm
Vậy ab+am/b*(b+m) > ab+bm/b*(b+m) Hay a/b > a+m/b+m
\(\frac{a}{b}-\frac{a+m}{b+m}=\frac{ab+am-ab-bm}{b\left(b+m\right)}=\frac{m\left(a-b\right)}{b\left(b+m\right)}\)
\(\frac{a}{b}>1\Rightarrow a>b>0\)
Nếu \(m>0\)thì \(\frac{m\left(a-b\right)}{b\left(b+m\right)}>0\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\).
Nếu \(m< 0\)thì \(\frac{m\left(a-b\right)}{b\left(b+m\right)}< 0\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\).
Câu này lớp 7
Ta có : a/b > 1
=> a > b > 0
=> a ; b \(\in N\)
Ta có : \(\frac{a}{b}=\frac{a.\left(b+m\right)}{b\left(b+m\right)}=\frac{a.b+a.m}{b^2+b.m}\)
\(\frac{a+m}{b+m}=\frac{\left(a+m\right)b}{\left(b+m\right).b}=\frac{a.b+b.m}{b^2+b.m}\)
Vì a > b => ( a.b + a.m ) > ( a.b + b.m )
=> \(\frac{a.b+a.m}{b^2+b.m}>\frac{a.b+b.m}{b^2+b.m}\)
\(\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
Không phải,câu này là toán nâng cao lớp 5 mà.Cô giáo mik in cho cả quyển.
Ta có: \(b=a+1\Rightarrow b-a=1\)
\(\frac{1}{a}\times\frac{1}{b}=\frac{1}{a\times b}\)(1)
\(\frac{1}{a}-\frac{1}{b}=\frac{b-a}{a\times b}=\frac{1}{a\times b}\)(2)
Từ (1) và (2) suy ra \(\frac{1}{a}\times\frac{1}{b}=\frac{1}{a}-\frac{1}{b}\)
Ta có: b=a+1=>b-a=1
Theo bài ra ta có: \(\frac{1}{a}.\frac{1}{b}=\frac{1}{a.b}=\frac{b-a}{a.b}\left(b-a=1\right)=\frac{b}{a.b}=\frac{a}{a.b}=\frac{1}{a}-\frac{1}{b}\)
=>\(\frac{1}{a}.\frac{1}{b}=\frac{1}{a}-\frac{1}{b}\)