Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)
Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)
Từ biểu thức (1) và biểu thức (2)
=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)
\(M=\frac{131.145+100}{45-132.145}\)
\(=\frac{131-\frac{100}{145}}{\frac{45}{145}-132}\)
\(=\frac{131-\frac{20}{29}}{\frac{9}{29}-132}\)
\(=\frac{131\frac{-20}{29}}{-132\frac{9}{29}}\)
\(\frac{131.145+100}{45-132.140}=\frac{132.145-45}{45-132.140}=-1\)
\(\frac{49^6.5-7^{11}}{\left(-7\right)^{10}.5+2.49^5}=\frac{7^{11}.7-7^{11}.1}{7^{10}.5+2.7^{10}}=\frac{7^{11}.\left(7-1\right)}{7^{10}.\left(5+2\right)}=\frac{7^{11}.6}{7^{11}}=6\)
So sánh các số sau:
a = 3549 b = √5272 c = √52+√352√72+√492 d = √52−√352√72−√492
=> A < B
\(5^{200}=\left(5^2\right)^{100}=25^{100}\)
\(3< 25=>3^{100}< 25^{100}=>3^{100}< 5^{200}\)
\(\frac{75^{20}}{45^{10}.25^{15}}=\frac{25^{20}.3^{20}}{3^{10}.3^{10}.5^{10}.25^{15}}=\frac{25^{20}}{25^5.25^{15}}=1\)
\(=>75^{20}=45^{10}.25^{15}\left(dpcm\right)\)
P/S:nếu a=b=>a:b=1 mk làm theo cách đó cho nhanh mà bn ghi sai đề r