\(\frac{20}{41}\)và \(\frac{31}{60}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

a) ta thấy 20 chưa đc 1 nửa của 41, 31 đc trên nửa của 60

=> 20/41 < 31/60

b) khi quy đồng ra MSC của 2013 và 2014 thì t thấy 2017 > 2016 => 2016/2013 < 2017/2014

29 tháng 7 2019

em cảm ơn chị đầu tiên đã trả lời giúp em ạ

4 tháng 9 2020

c) 

\(\frac{19}{18}=1+\frac{1}{18}\)  

\(\frac{2017}{2016}=1+\frac{1}{2016}\)   

Vì \(\frac{1}{18}>\frac{1}{2016}\)  

Vậy \(\frac{19}{18}>\frac{2017}{2016}\)    

d) 

\(\frac{133}{173}=\frac{130+3}{170+3}=\frac{13+0,3}{17+0,3}\)  

Ta có : 

\(\frac{a}{b}< \frac{a+x}{b+x}\forall a;b;x>0\)  

Vậy \(\frac{13}{17}< \frac{133}{173}\)

19 tháng 4 2019

A = 1/2.3/4.....2015/2016

= 1.3.5.....2015/2.4.6......2016

= 1.3.5.....2015/(1.2).(2.2).....(2.1008)

= 1.3.5.....2015/2^1008 . 1.2....1008

3 tháng 3 2016

de ot la dau = nha

1 tháng 5 2018

Bài 1:

ta có: \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)

\(B=\frac{4^2-2^2}{2^2.4^2}+\frac{6^2-4^2}{4^2.6^2}+...+\frac{98^2-96^2}{96^2.98^2}+\frac{100^2-98^2}{98^2.100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{100^2}\)

\(B=\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\)

\(\Rightarrow B< \frac{1}{4}\)

Bài 2:

ta có: \(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

Học tốt nhé bn !!

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc

25 tháng 4 2017

Do : \(\frac{2016}{2017}>\frac{2016}{2017+2018}\)

        \(\frac{2017}{2018}>\frac{2017}{2017+2018}\)

\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}>\frac{2016}{2017+2018}+\frac{2017}{2017+2018}=\frac{2016+2017}{2017+2018}\)

Vậy : \(\frac{2016}{2017}+\frac{2017}{2018}>\frac{2016+2017}{2017+2018}\)

      

25 tháng 4 2017

Ta có:

\(\frac{2016}{2017}>\frac{2017}{2018}\Rightarrow A>\frac{2016}{2018}+\frac{2017}{2018}\Rightarrow A>\frac{2016+2017}{2018}\)

\(\frac{2016+2017}{2017+2018}=\frac{2016+2017}{4035}\)

Vì:\(\frac{2016+2017}{2018}>\frac{2016+2017}{4015}\)

Nên:\(\frac{2016}{2017}+\frac{2017}{2018}>\frac{2016+2017}{2017+2018}\)

14 tháng 4 2016

Ta có : P = 2014/2015 + 2015/2016 + 2016/2017 < 2014/(2015+2016+2017) + 2015/(2015+2016+2017) + 2016/(2015+2016+2017) = Q

Suy ra : P < Q

Vậy P < Q.

14 tháng 4 2016

Ta thấy:\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)>\(\frac{2014+2015+2016}{2015+2016+2017}\)
Vậy     :P>Q

19 tháng 4 2015

Dấu < nhé!

2 tháng 5 2016

2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017