Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
\(\frac{19}{18}=1+\frac{1}{18}\)
\(\frac{2017}{2016}=1+\frac{1}{2016}\)
Vì \(\frac{1}{18}>\frac{1}{2016}\)
Vậy \(\frac{19}{18}>\frac{2017}{2016}\)
d)
\(\frac{133}{173}=\frac{130+3}{170+3}=\frac{13+0,3}{17+0,3}\)
Ta có :
\(\frac{a}{b}< \frac{a+x}{b+x}\forall a;b;x>0\)
Vậy \(\frac{13}{17}< \frac{133}{173}\)
A = 1/2.3/4.....2015/2016
= 1.3.5.....2015/2.4.6......2016
= 1.3.5.....2015/(1.2).(2.2).....(2.1008)
= 1.3.5.....2015/2^1008 . 1.2....1008
Bài 1:
ta có: \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
\(B=\frac{4^2-2^2}{2^2.4^2}+\frac{6^2-4^2}{4^2.6^2}+...+\frac{98^2-96^2}{96^2.98^2}+\frac{100^2-98^2}{98^2.100^2}\)
\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)
\(B=\frac{1}{2^2}-\frac{1}{100^2}\)
\(B=\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\)
\(\Rightarrow B< \frac{1}{4}\)
Bài 2:
ta có: \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Học tốt nhé bn !!
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
Do : \(\frac{2016}{2017}>\frac{2016}{2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2017+2018}\)
\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}>\frac{2016}{2017+2018}+\frac{2017}{2017+2018}=\frac{2016+2017}{2017+2018}\)
Vậy : \(\frac{2016}{2017}+\frac{2017}{2018}>\frac{2016+2017}{2017+2018}\)
Ta có:
\(\frac{2016}{2017}>\frac{2017}{2018}\Rightarrow A>\frac{2016}{2018}+\frac{2017}{2018}\Rightarrow A>\frac{2016+2017}{2018}\)
\(\frac{2016+2017}{2017+2018}=\frac{2016+2017}{4035}\)
Vì:\(\frac{2016+2017}{2018}>\frac{2016+2017}{4015}\)
Nên:\(\frac{2016}{2017}+\frac{2017}{2018}>\frac{2016+2017}{2017+2018}\)
Ta có : P = 2014/2015 + 2015/2016 + 2016/2017 < 2014/(2015+2016+2017) + 2015/(2015+2016+2017) + 2016/(2015+2016+2017) = Q
Suy ra : P < Q
Vậy P < Q.
Ta thấy:\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)>\(\frac{2014+2015+2016}{2015+2016+2017}\)
Vậy :P>Q
2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017
a) ta thấy 20 chưa đc 1 nửa của 41, 31 đc trên nửa của 60
=> 20/41 < 31/60
b) khi quy đồng ra MSC của 2013 và 2014 thì t thấy 2017 > 2016 => 2016/2013 < 2017/2014
em cảm ơn chị đầu tiên đã trả lời giúp em ạ