Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(2^{300}=8^{100}\)
\(3^{200}=9^{100}\)
mà 8<9
nên \(2^{300}< 3^{200}\)
b: \(3^{500}=243^{100}\)
\(7^{300}=343^{100}\)
mà 243<243
nên \(3^{500}< 7^{300}\)
a) 1030 và 2100 .
1030 = ( 103 )10 = 100010 .
2100 = ( 210 )10 = 102410 .
Vì 100010 < 102410 .
\(\Rightarrow\) 1030 < 2100 .
Vậy ....
b) \(\uparrow\) Lm như trên .
Lời giải:
a.
\(3^{21}=3.3^{20}=3.9^{10}\)
\(2^{31}=2.2^{30}=2.(2^3)^{10}=2.8^{10}\)
Mà $3.9^{10}> 2.8^{10}$ nên $3^{21}> 2^{31}$
b.
$2^{300}=(2^3)^{100}=8^{100}$
$3^{200}=(3^2)^{100}=9^{100}$
Mà $8^{100}< 9^{100}$ nên $2^{300}< 3^{200}$
c.
$32^9=(2^5)^9=2^{45}$
$18^{13}> 16^{13}=(2^4)^{13}=2^{52}$
Mà $2^{45}< 2^{52}$ nên $32^9< 18^{13}$
6255 và 1257
a, 6255 = (54)5 = 520
1257 = (53)7 = 521
Vì 520 < 521 nên 6255 < 1257
b, 32n = (32)n = 9n
23n = (23)n = 8n
9n > 8n ( nếu n > 0)
9n = 8n (nếu n = 0)
Vậy nếu n = 0 thì 23n = 32n
nếu n > 0 thì 32n > 23n
8^5 = (2^3)^5 = 2^15 = 2^14 . 2
3.4^7 = 3.2^14
2^14 = 2^14 mà 3 > 2 nên 8^5 < 3.4^7
#Đàoo
(-2017)2019 và (-2018)2020
Do số (-2017)2019 có số mũ lẻ nên là số âm
Còn ( -2018)2020 có số mũ chẵn nên là số dương
Ta dễ dàng nhận biết được số âm < số dương
Vậy (-2017)2019 < (-2018)2020
Ta có\(\left(-2017\right)^{2019}=-\left(2017\right)^{2019}< 0\)(1)
\(\left(-2018\right)^{2020}=2018^{2020}>0\)(2)
Từ (1) và (2)\(\Rightarrow\left(-2017\right)^{2019}< \left(-2018\right)^{2020}\)
a)\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}>1024^9\)
b) \(9^{12}=\left(3^2\right)^{12}=3^{24}\) và \(27^7=\left(3^3\right)^7=3^{21}\)
=> \(9^{12}>27^7\)
a, 1024 mũ 9 = 2 mũ 10 .9 = 2 mũ 90 < 2 mũ 100
b, 27 mũ 7 = 3 mũ 3.7 =3 mũ 21 < 3 mũ 24 = 3 mũ 2.12 = 9 mũ 12
c,2 mũ 161 > 2 mũ 160 = 2 mũ 4.40 = 16 mũ 40 > 13 mũ 40
a 4443333 = 3334444
b 3484 < 4363
c 199010 +19909 > 199110
d 22004 > 5891
e 1031 > 2100
k mik nha bn !!! mình làm nanh nhất !
Bạn Trịnh Quang phần a bn sai rồi. 4443333< 3334444 nha bạn