Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
450= ( 43 ) 50/3 = 64 50/3
830 =( 82 ) 15 = 6415
ta có 50/3 > 15 => 450 > 830
\(4^{50}\)= \(\left(2^2\right)^{^{50}^{ }}\)\(=2^{100}\)
\(8^{30}=\left(2^3\right)^{30}=2^{90}\)
vì \(2^{100}>2^{90}\)nên\(4^{50}>8^{30}\)
\(\text{b, 5^36 = (5^3)^12 = 125}^{12}\)
\(\text{ 11^24 = (11^2)^12}=121^{12}\)
\(\text{Vì }125^{12}>121^{12}=>5^{36}>11^{24}\)
\(\text{c, }107^{50}=\left(107^2\right)^{25}=11449^{25}\)
\(73^{75}=\left(73^3\right)^{25}=389017^{25}\)
\(\text{Vì }11449^{25}< 389017^{25}\)\(=>107^{50}< 73^{75}\)
a,
15^12=(3*5)^12=3^12*5^12
81^3*125^5=(3^4)^3*(5^3)^5=3^12*5^15
Vì 12<15 suy ra 5^12<5^15
Suy ra 3^12*5^12<3^12*5^15
\(a.81^3.125^5=\left(3^4\right)^3.\left(5^3\right)^5=3^{12}.5^{15}=3^{12}.5^{12}.5^3=\left(3.5\right)^{12}.5^3=15^{12}.5^3>15^{12}\)
\(b.4^{20}.81^{12}=\left(2^2\right)^{20}.\left(9^2\right)^{12}=2^{40}.9^{24}=2^{20}.2^{20}.9^{20}.9^4=\left(2.9\right)^{20}.2^{20}.9^4=18^{20}.2^{20}.9^4>18^{20}\)
\(c.73^{75}=\left(73^3\right)^{25}=389017^{25}\)
\(107^{50}=107^{2.50}=\left(107^2\right)^{25}=11449^{25}\)
Vì \(389017^{25}>11449^{25}\Rightarrow73^{75}>107^{50}\)
a/
\(27^{81}=\left(3^3\right)^{81}=3^{241}\)
\(81^{27}=\left(3^4\right)^{27}=3^{108}\)
\(\Rightarrow27^{81}=3^{241}>3^{108}=81^{27}\)
b/
\(5^{60}=\left(5^3\right)^{20}=125^{20}\)
\(7^{40}=\left(7^2\right)^{20}=49^{20}\)
\(\Rightarrow5^{60}=125^{20}>49^{20}=7^{40}\)
c/
\(11^{102}=\left(11^2\right)^{51}=121^{51}>121^{50}>99^{50}\)
d. So sánh a=12^34567 với b=(12^5)^12=12^60 => a>b
so sánh b=(12^5)^12 với c=34567^12 => b>c
Vậy a>c.
Ta co : \(3^{500}\&7^{300}\)
\(\Rightarrow3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(\Rightarrow7^{300}=\left(7^3\right)^{100}=343^{100}\)
Ta thay \(243^{100}
a/ 507>497=(72)7=714
=> 507>714
b/ 12410 < 12510=(53)10=530
=> 12410 < 530
c/ 921=(32)21=342
7297=(36)7=342
=> 921 = 7297
\(7^{50}=\left(7^2\right)^{25}=49^{25}\)
\(4^{75}=\left(4^3\right)^{25}=64^{25}\)
\(64^{25}>49^{25}\Rightarrow4^{75}>7^{50}\)