K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

b)Có \(63^7< 64^7\)

\(64^7=\left(2^6\right)^7=2^{42}\)

\(16^{12}=\left(2^4\right)^{12}=2^{48}\)

Mà \(2^{42}< 2^{48}\Rightarrow63^7< 64^7< 16^{12}\Rightarrow63^7< 16^{12}\)

Bài 1:

Ta có:

\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)

\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)

Lại có:

\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)

\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)

Bài 2:

Ta có:

\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)

\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)

\(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)

\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)

\(\Rightarrow13A>13B\Rightarrow A>B\)

15 tháng 7 2016

Giúp với :)) !!!!!

16 tháng 3 2018

Ta có : 

\(\left(\frac{1}{32}\right)^7=\frac{1^7}{32^7}=\frac{1}{\left(2^5\right)^7}=\frac{1}{2^{5.7}}=\frac{1}{2^{35}}\)

\(\left(\frac{1}{16}\right)^9=\frac{1^9}{16^9}=\frac{1}{\left(2^4\right)^9}=\frac{1}{2^{4.9}}=\frac{1}{2^{36}}\)

Vì \(\frac{1}{2^{35}}>\frac{1}{2^{36}}\) ( cùng tử, mẫu nào bé hơn thì phân số đó lớn hơn ) nên \(\left(\frac{1}{32}\right)^7>\left(\frac{1}{16}\right)^9\)

Vậy \(\left(\frac{1}{32}\right)^7>\left(\frac{1}{16}\right)^9\)

Chúc bạn học tốt ~ 

16 tháng 3 2018

Ta có  :     \(\left(\frac{1}{32}\right)^7=\left(\frac{1}{2^5}\right)^7=\frac{1}{2^{35}}\)

                 \(\left(\frac{1}{16}\right)^9=\left(\frac{1}{2^4}\right)^9=\frac{1}{2^{36}}\)

DO :  \(\frac{1}{2^{35}}>\frac{1}{2^{36}}\)\(\Rightarrow\left(\frac{1}{32}\right)^7>\left(\frac{1}{16}\right)^9\)

Tk mk nha !!! 

3 tháng 5 2018

\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{400}-1\right)\)

\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{400}\right)\)

\(-A=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{399}{400}\)

\(-A=\frac{1\cdot3}{2\cdot2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot...\cdot\frac{19.21}{20.20}\)

\(-A=\frac{1\cdot2\cdot3\cdot...\cdot19}{2\cdot3\cdot4\cdot...\cdot20}\cdot\frac{3\cdot4\cdot5\cdot...\cdot21}{2\cdot3\cdot4\cdot...\cdot20}\)

\(-A=\frac{1}{20}\cdot\frac{21}{2}=\frac{21}{40}>\frac{20}{40}=\frac{1}{2}\)

\(-A>\frac{1}{2}\Rightarrow A< \frac{1}{2}\)

17 tháng 11 2015

\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)......\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)

\(-\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.......\frac{80}{81}.\frac{99}{100}\)

=\(-\frac{1.3.2.4.3.5..............8.10.9.11}{2^2.3^2.4^2.......10^2}=-\frac{\left(1.2.3.....9\right)\left(3.4.5....11\right)}{2.3.4....10.2.3.4.....10}=-\frac{11}{20}\)