Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{3}\right)^{500}=\left(\frac{1}{3}^5\right)^{100}=\frac{1}{243}^{100}\)
\(\left(\frac{1}{5}\right)^{300}=\left(\frac{1}{5}^3\right)^{100}=\frac{1}{125}^{100}\)
Vì \(\frac{1}{243}<\frac{1}{125}=>\frac{1}{243}^{100}<\frac{1}{125}^{100}=>\left(\frac{1}{3}\right)^{500}<\left(\frac{1}{5}\right)^{300}\)
3-500=(35)-100= 243-100
5-300= (53)-100 =125-100
243>125 => 243-100<125-100
Hay 3-500 <5-300
a) Ta có :\(\left(\frac{-1}{5}\right)^{300}=\frac{-1^{300}}{5^{300}}=\frac{1}{125^{100}}\)
\(\left(\frac{-1}{3}\right)^{500}=\frac{-1^{500}}{3^{500}}=\frac{1}{243^{100}}\)
Mà \(\frac{1}{125^{100}}>\frac{1}{243^{100}}\)
\(\Rightarrow\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)
b)Ta có :\(2^{90}=\left(2^{15}\right)^6=32768^6\)
\(5^{36}=\left(5^6\right)^6=15625^6\)
Vì \(32768^6>15625^6\Rightarrow2^{90}>5^{36}\)
a.Ta có: \(\left(\frac{-1}{5}\right)^{300}=\left(\frac{-1}{5}^3\right)^{100}=\left(\frac{-1}{125}\right)^{100}=\left(\frac{1}{125}\right)^{100}\)
\(\left(\frac{-1}{3}\right)^{500}=\left(\frac{-1}{3}^5\right)^{100}=\left(\frac{-1}{243}\right)^{100}=\left(\frac{1}{234}\right)^{100}\)
Mà: \(\frac{1}{125}>\frac{1}{234}\Rightarrow\left(\frac{1}{125}\right)^{100}>\left(\frac{1}{234}\right)^{100}\)
Vậy \(\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)
b.Ta có: \(2^{90}=\left(2^{10}\right)^9=1024^9\)
\(5^{36}=\left(5^4\right)^9=625^9\)
Mặt khác: \(1024>625\Rightarrow1024^9>625^9\)
Vậy \(2^{90}>5^{36}\)
Ta có:
\(\left(-\frac{1}{5}\right)^{300}=\left[\left(-\frac{1}{5}\right)^3\right]^{100}=\left(-\frac{1}{125}\right)^{100}=\left(\frac{1}{125}\right)^{100}.\)
\(\left(-\frac{1}{3}\right)^{500}=\left[\left(-\frac{1}{3}\right)^5\right]^{100}=\left(-\frac{1}{243}\right)^{100}=\left(\frac{1}{243}\right)^{100}.\)
Vì \(125< 243\) nên \(\frac{1}{125}>\frac{1}{243}.\)
\(\Rightarrow\left(\frac{1}{125}\right)^{100}>\left(\frac{1}{243}\right)^{100}\)
\(\Rightarrow\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{3}\right)^{500}.\)
Chúc bạn học tốt!
3. \(\left(\frac{1}{2^5}\right)^{25}=\left(\frac{1^5}{2^5}\right)^{25}=\left[\left(\frac{1}{2}\right)^5\right]^{25}=\left(\frac{1}{2}\right)^{125}\)
\(\left(\frac{1}{3^{25}}\right)^5=\left(\frac{1^{25}}{3^{25}}\right)^5=\left[\left(\frac{1}{3}\right)^{25}\right]^5=\left(\frac{1}{3}\right)^{125}\)
Vì \(\frac{1}{2}>\frac{1}{3}\Rightarrow\left(\frac{1}{2^5}\right)^{25}>\left(\frac{1}{3^{25}}\right)^5\)
1. \(3^{800}=\left(3^8\right)^{100}=6561^{100}\)
\(5^{500}=\left(5^5\right)^{100}=3125^{100}\)
Vì \(6561>3125\Rightarrow3^{800}>5^{500}\)
2. \(\left(-2\right)^{3000}=\left[\left(-2\right)^3\right]^{1000}=\left(-8\right)^{1000}\)
\(\left(-3\right)^{2000}=\left[\left(-3\right)^2\right]^{1000}=9^{1000}\)
Vì \(-8< 9\Rightarrow\left(-2\right)^{3000}< \left(-3\right)^{2000}\)
Bạn tham khảo nhé
a ) Ta có :
\(\left(-\frac{1}{5}\right)^{300}=\left(\frac{1}{5}\right)^{300}=\frac{1}{5^{300}}=\frac{1}{\left(5^3\right)^{100}}=\frac{1}{125^{100}}\)
\(\left(-\frac{1}{3}\right)^{500}=\left(\frac{1}{3}\right)^{500}=\frac{1}{3^{500}}=\frac{1}{\left(3^5\right)^{100}}=\frac{1}{243^{100}}\)
Do \(\frac{1}{125^{100}}>\frac{1}{243^{100}}\left(125^{100}< 243^{100}\right)\)
\(\Rightarrow\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{3}\right)^{500}\)
b )
Ta có :
\(2550^{10}=\left(50.51\right)^{10}=50^{10}.51^{10}\)
\(50^{20}=50^{10}.50^{10}\)
Do \(50^{10}.51^{10}>50^{10}.50^{10}\)
\(\Rightarrow50^{20}< 2550^{10}\)
c )
Ta có :
\(2^{100}=\left(2^4\right)^{25}=16^{25}\)
\(3^{75}=\left(3^3\right)^{25}=27^{25}\)
\(5^{50}=\left(5^2\right)^{25}=25^{25}\)
Do \(16^{25}< 25^{25}< 27^{25}\)
\(\Rightarrow2^{100}< 5^{50}< 3^{75}\)
Ta có:
(-1/5)300 = (-1)300/5300 = 1/(53)100 = 1/125100
(-1/3)500 = (-1)500/3500 = 1/(35)100 = 1/243100
Vì 125100 < 243100
=> 1/125100 > 1/243100
=> (-1/5)300 > (-1/3)500
Ta có : \(\left(-\frac{1}{5}\right)^{300}=\left(-\frac{1}{5}\right)^{3.100}=\left(-\frac{1}{125}\right)^{100}=\left(\frac{1}{125}\right)^{100}\)
\(\left(-\frac{1}{3}\right)^{500}=\left(-\frac{1}{3}\right)^{5.100}=\left(-\frac{1}{243}\right)^{100}=\left(\frac{1}{243}\right)^{100}\)
Mà \(125< 243\Rightarrow\frac{1}{125}>\frac{1}{243}\Rightarrow\left(\frac{1}{125}\right)^{100}>\left(\frac{1}{243}\right)^{100}\)
\(=>\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{3}\right)^{500}\)