Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\left(\sqrt{2018}+\sqrt{2020}\right)\)
\(\Rightarrow A^2=2018+2\sqrt{2018.2020}+2020=4038+\sqrt{4.2018.2020}=4038+\sqrt{4.\left(2019^2-1\right)}\)
Đặt \(B=2\sqrt{2019}=\sqrt{4.2019}\)
\(B^2=4.2019=2.2019+2.2019=4038+\sqrt{4.2019^2}\)
=> \(\sqrt{4.2019^2}>\sqrt{4.\left(2019^2-1\right)}\)
\(\Rightarrow A>B\Leftrightarrow\sqrt{2018}+\sqrt{2020}>2\sqrt{2019}\)
\(8^2=64=32+2\sqrt{16^2}\)
\(\left(\sqrt{15}+\sqrt{17}\right)^2=32+2\sqrt{15.17}=32+2\sqrt{\left(16-1\right)\left(16+1\right)}\)
\(=32+2\sqrt{16^2-1}\)
\(< =>8^2>\left(\sqrt{15}+\sqrt{17}\right)^2\)
\(8>\sqrt{15}+\sqrt{17}\)
\(\left(\sqrt{2019}+\sqrt{2021}\right)^2=4040+2\sqrt{2019.2021}\)
\(=4040+2\sqrt{\left(2020-1\right)\left(2020+1\right)}=4040+2\sqrt{2020^2-1}\)
\(\left(2\sqrt{2020}\right)^2=8080=4040+2\sqrt{2020^2}\)
\(< =>\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)
mik chọn điền
<
mik lười chép ại đề bài
Ta có:
\(\sqrt{2016}-\sqrt{2017}=\frac{\left(\sqrt{2016}-\sqrt{2017}\right)\left(\sqrt{2016}+\sqrt{2017}\right)}{\sqrt{2016}+\sqrt{2017}}\)
\(=\frac{2016-2017}{\sqrt{2016}+\sqrt{2017}}=-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)
\(\sqrt{2017}-\sqrt{2018}=\frac{\left(\sqrt{2017}-\sqrt{2018}\right)\left(\sqrt{2017}+\sqrt{2018}\right)}{\sqrt{2017}+\sqrt{2018}}\)
\(=\frac{2017-2018}{\sqrt{2017}+\sqrt{2018}}=-\frac{1}{\sqrt{2017}+\sqrt{2018}}\)
Ta thấy rằng:
\(\sqrt{2018}>\sqrt{2016}\)
\(\Leftrightarrow\sqrt{2017}+\sqrt{2018}>\sqrt{2016}+\sqrt{2017}\)
\(\Leftrightarrow\frac{1}{\sqrt{2017}+\sqrt{2018}}< \frac{1}{\sqrt{2016}+\sqrt{2017}}\)
\(\Leftrightarrow-\frac{1}{\sqrt{2017}+\sqrt{2018}}>-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)
Vậy \(\sqrt{2017}-\sqrt{2018}>\sqrt{2016}-\sqrt{2017}\)
Áp dụng bđt bunhia copski ta có:
`(sqrt2+sqrt3)^2<=(1+1)(2+3)`
`<=>(sqrt2+sqrt3)^2<=2.5=10`
`=>sqrt2+sqrt3<=sqrt{10}`
Dấu "=" không xảy ra
`=>sqrt2+sqrt3<sqrt{10}`
Ta có \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6};\left(\sqrt{10}\right)^2=10=5+5\)
Mà \(\left(2\sqrt{6}\right)^2=24;5^2=25\)
\(\Rightarrow2\sqrt{6}< 5\Rightarrow\left(\sqrt{2}+\sqrt{3}\right)^2< \left(\sqrt{10}\right)^2\)
\(\Rightarrow\sqrt{2}+\sqrt{3}< \sqrt{10}\)
Bài 1: Ta có: \(\sqrt{2020}-\sqrt{2019}=\frac{1}{\sqrt{2020}+\sqrt{2019}};\)\(\sqrt{2018}-\sqrt{2017}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)
Dễ thấy \(\sqrt{2020}+\sqrt{2019}>\sqrt{2018}+\sqrt{2017}\)nên \(\frac{1}{\sqrt{2020}+\sqrt{2019}}< \frac{1}{\sqrt{2018}+\sqrt{2017}}\)
Suy ra\(\sqrt{2020}-\sqrt{2019}< \sqrt{2018}-\sqrt{2017}\)
Bài 2: Xét biểu thức \(\sqrt{a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2}=\sqrt{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}=\sqrt{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1\)(Vì \(a^2+a+1>0\forall a\inℝ\))
Áp dụng công thức tổng quát trên, ta được: \(\sqrt{2019^2+2019^2.2020^2+2020^2}=2019^2+2019+1\)(là số tự nhiên) (đpcm)
Ta có: 1 < 2 ⇒ 1 < 2 ⇒ 1 < 2
Suy ra: 1 + 1 < 2 + 1
Vậy 2 < 2 + 1
3 + 2 và 2 + 6
Ta có: 3 + 2 2 = 3 + 4 3 + 4 = 7 + 4 3
2 + 6 2 = 2 + 2 12 + 6 = 8 + 2 4 . 3 ) = 8 + 2. 4 . 3 = 8 + 4 3
Vì 7 + 4 3 < 8 + 4 3 nên 3 + 2 2 < 2 + 6 2
Vậy 3 + 2 < 2 + 6
Ta có \(\left(\sqrt{2018}+\sqrt{2020}\right)^2=4038+2\sqrt{4076360}\) và \(\left(2\sqrt{2019}\right)^2=8076=4038+4038\)
Mà \(\left(2\sqrt{4076360}\right)^2=16305440\) và \(4038^2=16305444\)
\(\Rightarrow2\sqrt{4076360}< 4038\)
\(\Rightarrow\sqrt{2018}+\sqrt{2020}< 2\sqrt{2019}\)
\(\left(\sqrt{2018}+\sqrt{2020}\right)^2=4038+2\cdot\sqrt{2018\cdot2020}\)
\(\left(2\sqrt{2019}\right)^2=8076=4038+4038\)
mà \(2\cdot\sqrt{2018\cdot2020}< 4038\)
nên \(\sqrt{2018}+\sqrt{2020}< 2\sqrt{2019}\)