Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(\frac{15}{21}=\frac{3.5}{3.7}=\frac{5}{7}\)
còn \(\frac{12.5}{17.5}=\frac{25}{35}=\frac{5.5}{5.7}=\frac{5}{7}\)
Vậy \(\frac{15}{21}=\frac{12.5}{17.5}\)
Vì 4.12 = 6.8 nên \(\frac{4}{6} = \frac{8}{{12}}\)
Vì 8.(-15) = 12. (-10) nên \(\frac{8}{{12}} = \frac{{ - 10}}{{ - 15}}\)
Vì 4.(-15) = 6.(-10) nên \(\frac{4}{6} = \frac{{ - 10}}{{ - 15}}\)
a) Ta có: 6. (-15) = -90;
10.(-9) = = - 90
Vậy tích hai số hạng 6 và -15 bằng tích hai số hạng 10 và -9
b) Nhân hai vế của tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\) với tích bd, ta được: \(\frac{{a.b.d}}{b} = \frac{{c.b.d}}{d} \Rightarrow ad = bc\)
Vậy ta được đẳng thức ad = bc
a) 6.(-15) = 10.(-9) = -90
b) a/b . bd = ad
c/d . bd = bc
Ta được ad = bc
a) +) Ta có: \( - 3,75 = \frac{{ - 375}}{{100}} = \frac{{ - 15}}{4} = \frac{{ - 45}}{{12}}\).
Do \( - 7 > - 45\) nên \(\frac{{ - 7}}{{12}} > \frac{{ - 45}}{{12}}\).
+) Ta có: \(\frac{0}{{ - 3}} = 0\). Nên \(\frac{0}{{ - 3}} < \frac{4}{5}\).
b) Các số hữu tỉ dương là: \(\frac{4}{5};\,5,12\).
Các số hữu tỉ âm là: \(\frac{{ - 7}}{{12}};\, - 3;\, - 3,75\)
Do \(\frac{0}{{ - 3}} = 0\) nên số không là số hữu tỉ dương cũng không là số hữu tỉ âm là: \(\frac{0}{{ - 3}}\).
Ta có \(\frac{5}{6} = 0,8(3)\) = \(0,8333....\)
Vì:\(0,834 > 0,8333... \Rightarrow 0,834 > \frac{5}{6}\)
a) Ta có:
\(\begin{array}{l}\frac{6}{{10}} = \frac{{6:2}}{{10:2}} = \frac{3}{5};\\\frac{9}{{15}} = \frac{{9:3}}{{15:3}} = \frac{3}{5}\end{array}\)
\(\begin{array}{l}\frac{{6 + 9}}{{10 + 15}} = \frac{{15}}{{25}} = \frac{{15:5}}{{25:5}} = \frac{3}{5};\\\frac{{6 - 9}}{{10 - 15}} = \frac{{ - 3}}{{ - 5}} = \frac{3}{5}\end{array}\)
Ta được: \(\frac{{6 + 9}}{{10 + 15}} = \frac{{6 - 9}}{{10 - 15}} = \frac{6}{{10}} = \frac{9}{{15}}\)
b) - Vì \(k = \frac{a}{b} \Rightarrow a = k.b\)
Vì \(k = \frac{c}{d} \Rightarrow c = k.d\)
- Ta có:
\(\begin{array}{l}\frac{{a + c}}{{b + d}} = \frac{{k.b + k.d}}{{b + d}} = \frac{{k.(b + d)}}{{b + d}} = k;\\\frac{{a - c}}{{b - d}} = \frac{{k.b - k.d}}{{b - d}} = \frac{{k.(b - d)}}{{b - d}} = k\end{array}\)
- Như vậy, \(\frac{{a + c}}{{b + d}}\) =\(\frac{{a - c}}{{b - d}}\) = \(\frac{a}{b}\) =\(\frac{c}{d}\)( = k)
a: \(\dfrac{6+9}{10+15}=\dfrac{15}{25}=\dfrac{3}{5};\dfrac{6-9}{10-15}=\dfrac{-3}{-5}=\dfrac{3}{5}\)
=>Bằng nhau
b: a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k;\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)
=>\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a}{b}=\dfrac{c}{d}\)
a) Vì hai đại lượng x,y tỉ lệ thuận, liên hệ với nhau bởi công thức y = 3.x nên hệ số tỉ lệ k = 3
b) Ta có:
\(\begin{array}{l}\frac{{{y_1}}}{{{x_1}}} = \frac{9}{3} = 3;\frac{{{y_2}}}{{{x_2}}} = \frac{{15}}{5} = 3;\frac{{{y_3}}}{{{x_3}}} = \frac{{21}}{7} = 3\\ \Rightarrow \frac{{{y_1}}}{{{x_1}}} = \frac{{{y_2}}}{{{x_2}}} = \frac{{{y_3}}}{{{x_3}}}\end{array}\)
c) Ta có:
\(\begin{array}{l}\frac{{{x_1}}}{{{x_2}}} = \frac{3}{5};\frac{{{y_1}}}{{{y_2}}} = \frac{9}{{15}} = \frac{3}{5} \Rightarrow \frac{{{x_1}}}{{{x_2}}} = \frac{{{y_1}}}{{{y_2}}}\\\frac{{{x_1}}}{{{x_3}}} = \frac{3}{7};\frac{{{y_1}}}{{{y_3}}} = \frac{9}{{21}} = \frac{3}{7} \Rightarrow \frac{{{x_1}}}{{{x_3}}} = \frac{{{y_1}}}{{{y_3}}}\end{array}\)
Ta có:
\(\begin{array}{l}\frac{{12}}{{28}} = \frac{{12:4}}{{28:4}} = \frac{3}{7};\\\frac{{7,5}}{{17,5}} = \frac{{75}}{{175}} = \frac{{75:25}}{{175:25}} = \frac{3}{7}\end{array}\)
Vậy \(\frac{{12}}{{28}}\) = \(\frac{{7,5}}{{17,5}}\)
12/28=3/7
7,5/17,5=3/7
=>12/28=7,5/17,5