Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có công thức :
\(\frac{a}{b}< 1\) \(\Rightarrow\) \(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Rightarrow\)\(B=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=A\)
Vậy \(A>B\)
Ta có: 1516+1/1517+1 < 1
1516+1+14 / 1517+1+14
15. (1+1515) / 15. (1+1516)
Triệt tiêu 15 còn 1+1515/ 1+1516
Vậy A< B
Ap dụng công thức: a/b < 1 Suy ra a/b < a+m/b+m
\(A=\frac{15^{16}+1}{15^{17}+1}\) và \(B=\frac{15^{15}+1}{15^{16}+1}\)
\(A< 1\Rightarrow A>\frac{15^{16}+1+14}{15^{17}+1+4}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=B\)
\(\Rightarrow A< B\)
\(A=\frac{15^{16}+1}{15^{17}+1}=\frac{1}{225}\)
\(B=\frac{15^{15}+1}{15^{16}+1}=\frac{1}{225}\)
\(\Rightarrow A=B\)
a) \(A=\frac{15^{16}+1}{15^{17}+1}\)và\(B=\frac{15^{15}+1}{15^{16}+1}\)
ta có \(A=\frac{15^{16}}{15^{17}}\)và\(B=\frac{15^{15}}{15^{16}}\)
ta dễ nhận thấy phần cơ số của hai phân số A và B = nhau
mà phần mũ của các lũy thừa phân số A đều lớn hơn phân số B
\(\Rightarrow\frac{15^{16}}{15^{17}}>\frac{15^{15}}{15^{16}}\)
\(\Rightarrow\frac{15^{16}+1}{15^{17}+1}>\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow A>B\)
\(A=\frac{15^{16}+1}{15^{17}+1}vaB=\frac{15^{15}+1}{15^{16}+1}\)
+)Ta thấy\(A=\frac{15^{16}+1}{15^{17}+1}< 1\)
\(\Rightarrow A< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15.\left(15^{15}+1\right)}{15.\left(15^{15}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=B\)
Vậy A<B
b)Đề sai
Chúc bạn học tốt
\(\frac{10^{15}+1}{10^{16}+1}=\frac{10^{16}+10}{10^{17}+10}\)
Vì B<1 suy ra B<\(\frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=A\)
Vậy B<A
Ta có:
\(A=\frac{10^{15}+1}{10^{16}+1}\)
\(10A=\frac{10^{16}+10}{10^{16}+1}\)
\(B=\frac{10^{16}+1}{10^{17}+1}\)
\(10B=\frac{10^{17}+10}{10^{17}+1}\)
Ta so sánh \(10A\) và \(10B\)
Có:
\(10A:\) Mẫu - tử = 9
\(10B:\) Mẫu - tử = 9
Lại có:
\(\frac{10^{16}+10}{10^{16}+1}\) \(-1\)\(=\frac{9}{10^{16}+1}\)
\(\frac{10^{17}+10}{10^{17}+1}-1=\frac{9}{10^{17}+1}\)
Vì \(\frac{9}{10^{16}+1}\)\(>\frac{9}{10^{17}+1}\)nên \(10A>10B\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Theo bải ra ta có:
A=\(\frac{10^{15}+1}{10^{16}+1}\)=> 10A =.\(\frac{10.\left(10^{15}+1\right)}{10^{16}+1}\)= \(\frac{10.10^{15}+1.10}{10^{16}+1}\)
= \(\frac{10.10^{15}+10}{10^{16}+1}\)=\(\frac{10^{16}+1+9}{10^{16}+1}\)= \(1+\frac{9}{10^{16}+1}\)
B= \(\frac{10^{16}+1}{10^{17}+1}\)=> 10B = \(\frac{10.\left(10^{16}+1\right)}{10^{17}+1}\)=\(\frac{10.10^{16}+1.10}{10^{17}+1}\)
= \(\frac{10.10^{16}+10}{10^{17}+1}\)= \(\frac{10^{17}+1+9}{10^{17}+1}\)= \(1+\frac{9}{10^{17}+1}\)
Vì 1=1 mà \(\frac{9}{10^{16}+1}\)> \(\frac{9}{10^{17}+1}\)nên => 10A > 10B => A>B
Vậy A>B.
rõ ràng ta chỉ cần so sánh giữa \(15^{30}+16^{12}+17^{50}-16^8\) và \(17^{30}+16^8+15^{50}-16^{12}\)
Áp dụng tính chất nếu a>b thì a-b>0 ta được:
\(15^{30}+16^{12}+17^{50}-16^8\)- \(\left(17^{30}+16^8+15^{50}-16^{12}\right)\)
= \(\left(17^{50}-17^{30}\right)+\left(16^{12}+16^{12}\right)+\left(15^{30}-15^{50}\right)-\left(16^8+16^8\right)\)
= \(\left(17^{50}-17^{30}\right)+\left(15^{30}-15^{50}\right)+2\left(16^{12}-16^8\right)\)
Vì 17^50 - 17^30 > l 15^30 - 15^50 l
nên \(\left(17^{50}-17^{30}\right)+\left(15^{30}-15^{50}\right)>0\)
=>\(15^{30}+16^{12}+17^{50}-16^8\)> \(17^{30}+16^8+15^{50}-16^{12}\)
=> Phân số thứ nhất > 1 và p/s thứ hai < 1
Lúc này bạn tự so sánh nha
Mình ko nhầm là phân số thứ 2 nhân với 15
kết quả la2phan6 số đó bằng nhau không tin bạn thử nhân chéo đi