K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

Mình đang cần gấp

Có 20182019-20182018=20182018+1-20182018=20182018(2018-1)=20182018.2019 (1)

     20182018-20182017=20182017+1-20182017=20182017(2018-1)=20182017.2019 (2)

Từ (1);(2)=>20182019-20182018>20182018-20182017

12 tháng 10 2020

\(2018^{2019}-2018^{2018}=2018^{2018}.2018-2018^{2018}=2018^{2018}\left(2018-1\right)\)

\(2018^{2018}-2018^{2017}=2018^{2017}.2018-2018^{2017}=2018^{2017}\left(2018-1\right)\)

\(2018^{2019}-2018^{2018}>2018^{2018}-2018^{2017}\)

12 tháng 10 2020

cám ơn banh nhé

12 tháng 4 2018

Ta có : \(0< \frac{2017}{2018}< 1\) nên   \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)

\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)

Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)

Vậy B>A

10 tháng 4 2018

Ta có : 

\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)

\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)

\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)

\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)

\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)

\(\Rightarrow P>Q\)

Chúc bạn học tốt !!! 

10 tháng 4 2018

vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q

Vậy P<Q.

mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá

12 tháng 4 2018

Ta có : 

\(A=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Vì : 

\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)

\(\frac{2018}{2018+2019}< \frac{2018}{2019}\)

Nên \(\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}\) ( cộng theo vế ) 

\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

12 tháng 4 2018

Mình thấy là A<B.

Tách A=2017+2018/2018+2019=2017/2018+2019 + 2018/2018+2019

Ta thấy từng số hạng của A lần lượt nhỏ hơn số hạng của B

=> A<B

27 tháng 2 2019

Ta có: 20182019 - 20182017 = 20182017(20182 - 1)

20182017 - 20182015 = 20182015(20182 - 1)

Vì 20182017(20182 - 1) > 20182015(20182 - 1)

=>  20182019 - 20182017 > 20182017 - 20182015

Vậy 20182019 - 20182017 > 20182017 - 20182015

7 tháng 8 2017

Bằng nhau nha

3 tháng 5 2021

Ta có:\frac{2017.2018-1}{2017.2018} =1-\frac{1}{2017.2018}

         \frac{2018.2019-1}{2018.2019}=1- \frac{1}{2018.2019}

vì 2017.2018>2018.2019

=> \frac{1}{2017.2018}  > \frac{1}{2018.2019}

=> 1- \frac{1}{2017.2018} > \frac{1}{2018.2019}

=> A>B