K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2021

Ta có :

\(\frac{\sqrt{x}-1}{\sqrt{x+2}}\)

\(=\frac{\sqrt{x}+2-3}{\sqrt{x}+2}\)

\(=1-\frac{3}{\sqrt{x}+2}\)

Ta có :

\(\frac{-1}{2}=1-\frac{3}{2}\)

Vì \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}+2\ge2\)

\(\Rightarrow\frac{3}{\sqrt{x}+2}\le\frac{3}{2}\)

\(\Rightarrow1-\frac{3}{\sqrt{x}+2}\le1-\frac{3}{2}\)

Hay \(\frac{\sqrt{x}-1}{\sqrt{x}+2}\le-\frac{1}{2}\)

5 tháng 5 2019

sử dụng phương pháp miền giá trị

5 tháng 5 2019

bạn nói rõ hơn được không?

6 tháng 7 2016

Rút gọn : \(B=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\) (ĐKXĐ : \(0\le x\ne1\) )

\(=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}< 1\)

Vậy B < 1

5 tháng 6 2015

Mau la \(\sqrt{X - 3} \) that sao

10 tháng 8 2020

a) \(ĐKXĐ:\) \(x\ne1,x>0\)

\(P=1:\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\right)\)

\(=1:\left(\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)

\(=1:\left[\frac{x+2+x-1-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right]\)

\(=1:\frac{\sqrt{x}.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)

Vậy \(P=\frac{x+\sqrt{x}+1}{\sqrt{x}}\left(x\ne1,x>0\right)\)

b) Xét hiệu \(P-3=\frac{x+\sqrt{x}+1}{\sqrt{x}}-3\)

\(=\frac{x+\sqrt{x}+1-3\sqrt{x}}{\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\) \(\forall x>0,x\ne1\)

Do đó : \(P>3\)

13 tháng 9 2019

\(C=\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)^2\)

\(=\sqrt{x}-1\)

Ta co:

\(\sqrt{x}-1+\frac{2}{\sqrt{x}}=\frac{x-\sqrt{x}+2}{\sqrt{x}}=\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}{\sqrt{x}}>0\)

\(\Rightarrow\sqrt{x}-1>-\frac{2}{\sqrt{x}}\)

2 tháng 7 2017

B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)

\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)

\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)

\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)

\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))

31 tháng 7 2020

Ta có: \(P=\frac{\sqrt{x}-4}{\sqrt{x}}\times\frac{x+\sqrt{x}+1}{\sqrt{x}-4}\)

 \(P=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)\(\left(ĐK:x>0\right)\)

Ta lấy \(P-2=\frac{x+\sqrt{x}+1}{\sqrt{x}}-2\)

                       \(=\frac{x+\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}}\)

                       \(=\frac{x-\sqrt{x}+1}{\sqrt{x}}\)

                       \(=\frac{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{3}{4}}{\sqrt{x}}\)

                      \(=\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}{\sqrt{x}}\)

Vì \(x>0\Rightarrow\sqrt{x}>0\)

 \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}{\sqrt{x}}>0\)

\(\Rightarrow P-2>0\)

\(\Rightarrow P>2\)

Học tốt