Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức : \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\)
Ta chứng minh được \(\frac{20}{39}>\frac{18}{41};\frac{18}{43}>\frac{14}{39};\frac{22}{27}>\frac{22}{29}\)
\(\Rightarrow\frac{20}{39}+\frac{22}{27}+\frac{18}{43}>\frac{14}{37}+\frac{22}{29}+\frac{18}{41}\)
\(\Rightarrow A>B\)
\(\left(4\frac{5}{37}-3\frac{4}{5}+8\frac{15}{29}\right)-\left(3\frac{5}{37}-6\frac{14}{29}\right)\)
\(\left(4\frac{5}{37}-3\frac{4}{5}+8\frac{15}{29}\right)-\left(3\frac{5}{37}-6\frac{14}{29}\right)\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}\)
\(=\left(\frac{3}{29}\cdot\frac{29}{3}\right)-\left(\frac{1}{5}\cdot\frac{29}{3}\right)\)
\(=1-\frac{29}{15}\)
\(=\frac{-14}{15}\)
b)\(\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{54}{24}\cdot\frac{56}{21}\)
=\(=\frac{16\cdot\left(-5\right)\cdot54\cdot56}{15\cdot14\cdot24\cdot21}\)
\(=\frac{2^4\cdot\left(-5\right)\cdot2\cdot3^3\cdot2^3\cdot7}{3\cdot5\cdot7\cdot2\cdot2^3\cdot3\cdot7}\)
\(=2^4\)
c)\(\frac{37}{7}\cdot\frac{8}{11}+\frac{37}{7}\cdot\frac{5}{11}-\frac{37}{7}\cdot\frac{2}{11}\)
\(=\frac{37}{7}\cdot\left(\frac{8}{11}+\frac{5}{11}-\frac{2}{11}\right)\)
\(=\frac{37}{7}\cdot1\)
\(=\frac{37}{7}\)
Đúng nhớ k nhen!
Ta có :
\(A=\frac{10^{29}+5}{10^{29}-2}\)\(=\frac{10^{29}-2+7}{10^{29}-2}\)\(=\frac{10^{29}-2}{10^{29}-2}+\frac{7}{10^{29}-2}\)\(=1+\frac{7}{10^{29}-2}\)
\(B=\frac{10^{29}}{10^{29}-7}=\frac{10^{29}-7+7}{10^{29}-7}=\frac{10^{29}-7}{10^{29}-7}+\frac{7}{10^{29}-7}=1+\frac{7}{10^{29}-7}\)
Vì \(\frac{7}{10^{29}-2}< \frac{7}{10^{29}-7}\Leftrightarrow A< B\)
22/37<29/37
29/37<29/33
Vậy 22/37<29/37<29/33
Ta có 22/37 < 29/37 và 29/37 < 29/33
=> 22/37< 29/37 < 29/33