\(\frac{121212}{171717}+\frac{2}{17}-\frac{404}{1717}\)với B=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

\(\frac{121212}{171717}+\frac{2}{17}-\frac{40}{171}\)

\(=\frac{12}{17}+\frac{2}{17}-\frac{4}{17}=\frac{10}{17}\)

\(\Rightarrow A=B=\frac{10}{17}\)

121212/171717 + 2/7 - 40/171

= 12/17 + 2/7 - 4/17 = 10/17

= A = B = 10/17

14 tháng 2 2018

Ta có: \(A=\frac{121212}{171717}+\frac{2}{17}-\frac{404}{1717}\Leftrightarrow\frac{12}{17}+\frac{2}{17}-\frac{4}{17}=\frac{12+2-4}{17}=\frac{0}{17}\)

\(B=\frac{10}{17}\). Ta thấy rằng \(\frac{0}{17}< \frac{10}{17}\Rightarrow A< B\)

Đ/s:

9 tháng 3 2018

\(b)\)  Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)

Vậy \(\frac{2009^{2009}+1}{2009^{2010}+1}>\frac{2009^{1010}-2}{2009^{2011}-2}\)

Chúc bạn học tốt ~

9 tháng 3 2018

Àk mình còn thiếu một điều kiện nữa xin lỗi nhé : 

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Bạn thêm vào nhé 

2 tháng 4 2017

Ta có:\(\frac{1717}{9999}\)=\(\frac{17}{99}\)

          \(\frac{171717}{999999}\)=\(\frac{17}{99}\)

Vậy cả 3 phân số đó đều bằng nhau.

3 tháng 4 2017

chúng đều bằng nhau vì:

1717/9999=17/99 và 171717/999999=17/99

------------Thiên-------------

15 tháng 9 2019

b)\(\frac{-17}{23}\)\(\frac{-171717}{232323}\)

Có: \(\frac{-171717}{232323}=\frac{-17}{23}\)

\(\frac{-17}{23}=\frac{-17}{23}\)

\(\Rightarrow\frac{-17}{23}=\frac{-171717}{232323}\)

24 tháng 7 2017

Ta có: \(\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{171}-\frac{3}{1717}}{\frac{9}{7}-\frac{9}{17}+\frac{9}{171}-\frac{9}{1717}}\)\(\frac{3.\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{171}-\frac{1}{1717}\right)}{9.\left(\frac{1}{7}-\frac{1}{17}+\frac{1}{171}-\frac{1}{1717}\right)}\)=\(\frac{3}{9}=\frac{1}{3}\)

11 tháng 3 2017

Bài 1:

Ta thấy A < 1

=> A = \(\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}=B\)

Vậy A < B

Bài 2:

Ta thấy C < 1

=> C = \(\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=D\)

Vậy C < D

18 tháng 2 2019

a) vì 21*52=-39*-28

b) vì -1717*232323=-171717*2323

3 tháng 5 2021

Ta có : \(A=\frac{10^{17}+5}{10^{17}-8}=\frac{10^{17}-8+13}{10^{17}-8}=1+\frac{13}{10^{17}-8}\)

Lại có B = \(\frac{10^{17}-13+13}{10^{17}-13}=1+\frac{13}{10^{17}-13}\)

Nhận thấy 1017 - 8 > 1017 - 13

=> \(\frac{13}{10^{17}-8}< \frac{13}{10^{17}-13}\)

=> \(1+\frac{13}{10^{17}-8}< 1+\frac{13}{10^{17}-13}\)

=> A < B