Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{97}\) + \(\frac{x+1}{98}\) - \(\frac{x+1}{99}\) - \(\frac{x+1}{100}\) \(\Leftrightarrow\) (x+1).(1/97 + 1/98 - 1/99 - 1/100) . Vì (1/97 = 1/ 98 - 1/99 - 1/100) \(\ne\) 0 \(\Rightarrow\) x+ 1= 0 \(\Leftrightarrow\) x= -1
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+....+\frac{1}{\sqrt{100}}\)
\(\Leftrightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>100.\frac{1}{\sqrt{100}}=10.\)
\(A=4\sqrt{32}+2\sqrt{50}-8\sqrt{2}-2\sqrt{98}\)
\(=4\sqrt{16.2}+2\sqrt{25.2}-8\sqrt{2}-2\sqrt{49.2}\)
\(=16\sqrt{2}+10\sqrt{2}-8\sqrt{2}-14\sqrt{2}=4\sqrt{2}\)
\(B=\frac{1}{\sqrt{6}+\sqrt{10}}-\frac{1}{\sqrt{6}-\sqrt{10}}\)
\(=\frac{\sqrt{10}-\sqrt{6}}{\left(\sqrt{6}+\sqrt{10}\right)\left(\sqrt{10}-\sqrt{6}\right)}+\frac{\sqrt{6}+\sqrt{10}}{\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{6}+\sqrt{10}\right)}\)
\(=\frac{\sqrt{10}-\sqrt{6}}{4}+\frac{\sqrt{10}+\sqrt{6}}{4}\)
\(=\frac{2\sqrt{10}}{4}=\frac{\sqrt{10}}{2}=\sqrt{2,5}\)
=10( (1-√4)/(1-4) + (√4-√7)/(4-7)+.....+(√97-√100)/(97-100) )
=10 (1-100)/3
=-990/3 = -330
Mik cx l9
k hay ko tùy bn
\(\frac{X+1}{99}+1+\frac{X+2}{98}+1+\frac{x+3}{97}+1+\frac{X+4}{96}+1=0\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{X+100}{98}+\frac{X+100}{97}+\frac{X+100}{96}=0\Leftrightarrow\left(X+100\right)\times\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0 \)\(\Leftrightarrow X+100=0\Leftrightarrow x=-100\)
\(\left(\sqrt{4,5}-\frac{1}{2}.\sqrt{72}+5\sqrt{\frac{1}{2}}\right).\left(42\sqrt{\frac{25}{6}}-10\sqrt{\frac{3}{2}}-12\sqrt{\frac{98}{3}}\right)\)
=\(\left(\frac{3\sqrt{2}}{2}-3\sqrt{2}+\frac{5\sqrt{2}}{2}\right).\left(35\sqrt{6}-5\sqrt{6}-28\sqrt{6}\right)\)
=\(\left(\frac{3\sqrt{2}-6\sqrt{2}+5\sqrt{2}}{2}\right).2\sqrt{6}\)
=\(2\sqrt{2}.\sqrt{6}=4\sqrt{3}\)