Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{10^{99}+1}{10^{100}+1}\)
\(\Leftrightarrow10A=\dfrac{10\left(10^{99}+1\right)}{10^{100}+1}\)
\(\Leftrightarrow10A=\dfrac{10^{100}+10}{10^{100}+1}=\dfrac{10^{100}+1+9}{10^{100}+1}=1+\dfrac{9}{10^{100}+1}\)
\(B=\dfrac{10^{100}+1}{10^{101}+1}\)
\(\Leftrightarrow10B=\dfrac{10\left(10^{100}+1\right)}{10^{101}+1}\)
\(\Leftrightarrow10B=\dfrac{10^{101}+10}{10^{101}+1}=\dfrac{10^{101}+1+9}{10^{101}+1}=1+\dfrac{9}{10^{101}+1}\)
Do \(\dfrac{9}{10^{100}+1}>\dfrac{9}{10^{101}+1}\) nên \(10A>10B\)
\(\Rightarrow A>B\)
Áp dụng tính chất:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{10^{100}+1}{10^{101}+1}< 1\)
\(B< \dfrac{10^{100}+1+9}{10^{101}+1+9}\)
\(B< \dfrac{10^{100}+10}{10^{101}+10}\)
\(B< \dfrac{10\left(10^{99}+1\right)}{10\left(10^{100}+1\right)}\)
\(B< \dfrac{10^{99}+1}{10^{100}+1}=A\)
\(B< A\)
a)Ta có:\(\sqrt{17}>\sqrt{16}\)
\(\sqrt{26}>\sqrt{25}\)
\(\implies\) \(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}\)
\(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)
Mà \(\sqrt{100}=10\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{100}\)
Mà \(\sqrt{100}>\sqrt{99}\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
b)Ta có:\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=100.\frac{1}{\sqrt{100}}\)
\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{10}.100=10\)
\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>10\left(đpcm\right)\)
a) Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a;b;m \(\in\) N*)
Ta có:
\(A=\frac{2008^{2008}+1}{2008^{2009}+1}< \frac{2008^{2008}+1+2007}{2009^{2009}+1+2007}\)
\(A< \frac{2008^{2008}+2008}{2008^{2009}+2008}\)
\(A< \frac{2008.\left(2008^{2007}+1\right)}{2008.\left(2008^{2008}+1\right)}=\frac{2008^{2007}+1}{2008^{2008}+1}=B\)
=> A < B
b) Áp dụng \(\frac{a}{b}>1\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\) (a;b;m \(\in\) N*)
Ta có:
\(N=\frac{100^{101}+1}{100^{100}+1}>\frac{100^{101}+1+99}{100^{100}+1+99}\)
\(N>\frac{100^{101}+100}{100^{100}+100}\)
\(N>\frac{100.\left(100^{100}+1\right)}{100.\left(100^{99}+1\right)}=\frac{100^{100}+1}{100^{99}+1}=M\)
=> M > N
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\cdot...\left(\frac{1}{10}-1\right)\)
\(A=\left(\frac{1}{2}-\frac{2}{2}\right)\left(\frac{1}{3}-\frac{3}{3}\right)\cdot...\cdot\left(\frac{1}{10}-\frac{10}{10}\right)\)
\(A=\left(-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}\right)\cdot...\cdot\left(-\frac{9}{10}\right)\)
\(A=\frac{-1}{2}\cdot\frac{-2}{3}\cdot...\cdot\frac{-9}{10}\)
\(A=\frac{\left(-1\right)\cdot\left(-2\right)\cdot...\cdot\left(-9\right)}{2\cdot3\cdot...\cdot10}\)
\(A=\frac{\left(-1\right)\cdot2\cdot...\cdot9}{2\cdot3\cdot...\cdot10}=\frac{-1}{10}\)
Mà \(\frac{-1}{10}>\frac{-1}{9}\)nên A > -1/9
Phần cuối tương tự
a) Ta có \(\sqrt{17}\)>\(\sqrt{16}\)
\(\sqrt{26}\)>\(\sqrt{25}\)
=>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{16}\)+\(\sqrt{25}\)+1
=>\(\sqrt{17}\)+\(\sqrt{26}\)+1> 4+ 5 +1
=>\(\sqrt{17}\)+\(\sqrt{26}\)+1 >10 hay >\(\sqrt{100}\)
=>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{99}\)
b) \(\frac{1}{\sqrt{1}}\)=1 >\(\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}\)>\(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)
....................................
\(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)
=>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)>\(\frac{1}{10}\)+\(\frac{1}{10}\)+...+\(\frac{1}{10}\)(có 100 số \(\frac{1}{10}\))
=>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)> \(\frac{100}{10}\)=10
\(a)\) Ta có :
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
Chúc bạn học tốt ~
M= \(\frac{100^{100}+1}{100^{99}+1}=\frac{100^{100}+100-99}{100^{99}+1}=\frac{100^{100}+100}{100^{99}+1}-\frac{99}{100^{99}+1}=\frac{100.\left(100^{99}+1\right)}{100^{99}+1}-\frac{99}{100^{99}+1}\)
\(=100-\frac{99}{100^{99}+1}\)
N= \(\frac{100^{101}+1}{100^{100}+1}=\frac{100^{101}+100-99}{100^{100}+1}=\frac{100^{101}+100}{100^{100}+1}-\frac{99}{100^{100}+1}\)
\(=\frac{100.\left(100^{100}+1\right)}{100^{100}+1}-\frac{99}{100^{100}+1}=100-\frac{99}{100^{100}+1}\)
Vi 100100+1>10099+1
=> \(\frac{99}{100^{99}+1}>\frac{99}{100^{100}+1}\)
=> \(100-\frac{99}{100^{99}+1}<100-\frac{99}{100^{100}+1}\)
=> M<N
a) \(\sqrt{17}>\sqrt{16}=4\); \(\sqrt{26}>\sqrt{25}=5\) => \(\sqrt{17}+\sqrt{26}+1>4+5+1=10=\sqrt{100}>\sqrt{99}\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
b) \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)
=> \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=10\)
Vậy.....
neu de 2 thi : >
de 3 : <
de 1 : <