Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{15^{16}+1}{15^{17}+1}\)và\(B=\frac{15^{15}+1}{15^{16}+1}\)
ta có \(A=\frac{15^{16}}{15^{17}}\)và\(B=\frac{15^{15}}{15^{16}}\)
ta dễ nhận thấy phần cơ số của hai phân số A và B = nhau
mà phần mũ của các lũy thừa phân số A đều lớn hơn phân số B
\(\Rightarrow\frac{15^{16}}{15^{17}}>\frac{15^{15}}{15^{16}}\)
\(\Rightarrow\frac{15^{16}+1}{15^{17}+1}>\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow A>B\)
\(A=\frac{15^{16}+1}{15^{17}+1}vaB=\frac{15^{15}+1}{15^{16}+1}\)
+)Ta thấy\(A=\frac{15^{16}+1}{15^{17}+1}< 1\)
\(\Rightarrow A< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15.\left(15^{15}+1\right)}{15.\left(15^{15}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=B\)
Vậy A<B
b)Đề sai
Chúc bạn học tốt
Ta có :
\(100C=\frac{100^{17}+100}{100^{17}+1}=\frac{100^{17}+1+99}{100^{17}+1}=\frac{100^{17}+1}{100^{17}+1}+\frac{99}{100^{17}+1}=1+\frac{99}{100^{17}+1}\)
\(100D=\frac{100^{16}+100}{100^{16}+1}=\frac{100^{16}+1+99}{100^{16}+1}=\frac{100^{16}+1}{100^{16}+1}+\frac{99}{100^{16}+1}=1+\frac{99}{100^{16}+1}\)
Vì \(\frac{99}{100^{17}+1}< \frac{99}{100^{16}+1}\) nên \(1+\frac{99}{100^{17}+1}< 1+\frac{99}{100^{16}+1}\) hay \(100A< 100B\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Ta có : \(100C=\frac{100^{17}+100}{100^{17}+1}=1+\frac{100}{100^{17}+1}\)
\(100D=\frac{100^{16}+100}{100^{16}+1}=1+\frac{100}{100^{16}+1}\)
Mà \(\frac{100}{100^{17}+1}< \frac{100}{100^{16}+1}\)
\(\Rightarrow10C< 10D\Rightarrow C< D\)
Bạn tham khảo nhé
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\) \(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(C=\frac{100^{100}+1}{100^{90}+1}< \frac{100^{100}+1+99}{100^{90}+1+99}=\frac{100^{100}+100}{100^{90}+100}=\frac{100\left(100^{99}+1\right)}{100\left(100^{89}+1\right)}=\frac{100^{99}+1}{100^{89}+1}=D\)
Vậy \(C< D\)
àk bạn ơi mk nhầm :
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
\(\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)
Áp dụng công thức thứ hai ta có :
\(C=\frac{100^{100}+1}{100^{90}+1}>\frac{100^{100}+1+99}{100^{90}+1+99}=\frac{100^{100}+100}{100^{90}+100}=\frac{100\left(100^{99}+1\right)}{100\left(100^{89}+1\right)}=\frac{100^{99}+1}{100^{89}+1}=D\)
Vậy \(C>D\) ( vầy mới đúng )
(-1/16)100= ((-1/2)4)100= (-1/2)4.100=(-1/2)400= (1/2)400
(-1/2)50=(1/2)50
Vì: (1/2)400> (1/2)50
=> (-1/16)100 > (-1/2)50
(-1/16)100= ((-1/2)4)100= (-1/2)4.100=(-1/2)400= (1/2)400
(-1/2)50=(1/2)50
Vì: (1/2)400> (1/2)50
=> (-1/16)100 > (-1/2)50
\(C=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+....+\frac{1}{100}\)\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{10^2}\)
\(C=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{10^2}\)\(< \)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\)
\(< \)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{9}-\frac{1}{10}\)
\(< \)\(\frac{1}{1}-\frac{1}{10}\)
\(< \frac{9}{10}\)
\(\)Vì \(\frac{9}{10}< 1\)nên \(C=\frac{1}{4}+\frac{1}{9}+....+\frac{1}{100}\)\(< 1\)
\(a)\) Ta có :
\(\frac{1}{100}A=\frac{100^{2009}+1}{100^{2009}+100}=\frac{100^{2009}+100}{100^{2009}+100}-\frac{99}{100^{2009}+100}=1-\frac{99}{100^{2009}+100}\)
\(\frac{1}{100}B=\frac{100^{2010}+1}{100^{2010}+100}=\frac{100^{2010}+100}{100^{2010}+100}-\frac{99}{100^{2010}+100}=1-\frac{99}{100^{2010}+100}\)
Vì \(\frac{99}{100^{2009}+100}>\frac{99}{100^{2010}+100}\) nên \(1-\frac{99}{100^{2009}+100}< 1-\frac{99}{100^{2010}+100}\)
Do đó :
\(\frac{1}{100}A< \frac{1}{100}B\)\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
\(D=\frac{100^{15}+1}{100^{16}+1}\)
\(\Rightarrow D=\frac{100.\left(100^{15}+1\right)}{100.\left(100^{16}+1\right)}\)
\(\Rightarrow D=\frac{100^{16}+100}{100^{17}+100}\)
Vì \(\forall a;b\inℕ^∗;a< b;b\ne0\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
\(\Rightarrow C=\frac{100^{16}+1}{100^{17}+1}< \frac{100^{16}+1+99}{100^{17}+1+99}\)
\(\Rightarrow C< \frac{100^{16}+100}{100^{17}+100}=\frac{100^{15}+1}{100^{16}+1}\)
\(\Rightarrow C< D\)