\(\frac{1001}{1000}\)và\(\frac{1002...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.\(\frac{1001}{1000}>\frac{1000}{1000}=1=\frac{1003}{1003}>\frac{1002}{1003}\Rightarrow\frac{1001}{1000}>\frac{1002}{1003}\)

2.a) \(x=\frac{a-3}{2a}\left(a\ne0\right)\)

\(=\frac{1}{2}\left(1-\frac{3}{a}\right)\inℤ\)

\(\Leftrightarrow\hept{\begin{cases}1-\frac{3}{a}\inℤ\\1-\frac{3}{a}⋮2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{3}{a}\inℤ\\\frac{3}{a}\equiv1\left(mod2\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\\\frac{3}{a}\equiv1\left(mod2\right)\end{cases}}\)

Ta có bảng :

\(a\)\(1\)\(-1\)\(3\)\(-3\)
\(\frac{3}{a}\)\(3\)\(-3\)\(1\)\(-1\)
\(1-\frac{3}{a}\)\(-2\)\(4\)\(0\)\(2\)
\(x\)\(-1\)\(2\)\(0\)\(1\)

Vậy \(a\in\left\{\pm1;\pm3\right\}\)

b)Ta có:\(\frac{a+2009}{a-2009}=1+\frac{4018}{a-2009}\left(a\ne2009\right)\)

\(\frac{b+2010}{b-2010}=1+\frac{4020}{b-2010}\left(b\ne2010\right)\)

\(\Rightarrow\frac{4018}{a-2009}=\frac{4020}{b-2010}\)

\(\Rightarrow\frac{a-2009}{4018}=\frac{b-2010}{4020}\)

\(\Rightarrow\frac{a-2009}{2009}=\frac{b-2010}{2010}\)

\(\Rightarrow\frac{a}{2009}-1=\frac{b}{2010}-1\)

\(\Rightarrow\frac{a}{2009}=\frac{b}{2010}\)

6 tháng 7 2021

Thanks!

4 tháng 4 2018

Mọi người giúp mik nha  ^_^

19 tháng 2 2020

Ta có: \(P\left(x\right)+Q\left(x\right)=2\left(1+x^2+x^4+...+x^{2010}\right)\)

\(\Rightarrow P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)=2\left(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{2010}}\right)\)

Đặt \(K=\left(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{2010}}\right)\)

\(\Rightarrow\frac{1}{2^2}K=\left(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{2012}}\right)\)

\(\Rightarrow K-\frac{1}{2^2}K=1-\frac{1}{2^{2012}}\)

\(\Rightarrow\frac{3}{4}K=1-\frac{1}{2^{2012}}\)

\(\Rightarrow K=\frac{4}{3}-\frac{1}{3.2^{2010}}\)

Lúc đó \(P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)=2\left(\frac{4}{3}-\frac{1}{3.2^{2010}}\right)=\frac{8}{3}-\frac{1}{3.2^{2009}}\)

\(=\frac{2^{2012}-1}{3.2^{2009}}\)

Ta thấy \(2^{2012}-1=2^{4.503}-1=\overline{...6}-1=\overline{...5}⋮5\)

Mà 3 . 22009 không chia hết cho 5 nên khi ta rút gọn \(\frac{2^{2012}-1}{3.2^{2009}}\)đến dạng tối giản thì a vẫn chia hết cho 5.

Vậy \(a⋮5\left(đpcm\right)\)

11 tháng 7 2017

thầy ơi bài này làm rồi

11 tháng 7 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Vậy:

\(\frac{a\cdot c}{b\cdot d}=\frac{bk\cdot dk}{b\cdot d}=\frac{k^2\cdot\left[b\cdot d\right]}{b\cdot d}=k^2\)

\(\frac{2009a^2+2010c^2}{2009b^2+2010d^2}=\frac{2009\left[bk\right]^2+2010\left[dk\right]^2}{2009b^2+2010d^2}=\frac{2009\cdot b^2k^2+201d^2k^2}{2009b^2+2010d^2}=\frac{k^2\left[2009b^2+2010d^2\right]}{2009b^2+2010d^2}=k^2\)Vậy khi \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{ac}{bd}=\frac{2009a^2+2010c^2}{2009b^2+2010d^2}\)

14 tháng 8 2017

a, \(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\left(\frac{2011}{1}+1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2012\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}=\frac{1}{2012}\)

b, \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}+\frac{1}{2017}}{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+1}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{\frac{2017}{1}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}=\frac{1}{2017}\)

26 tháng 2 2019

Làm ơn giúp mk!!

26 tháng 2 2019

\(\frac{b-2011}{c-2010}:\frac{2011-b}{2010-c}=\frac{b-2011}{c-2010}\cdot\frac{-\left(c-2010\right)}{-\left(b-2011\right)}=1\)

\(\frac{a-2009}{b-2011}=\frac{2010-c}{2009-a}=\frac{-\left(c-2010\right)}{-\left(a-2009\right)}=\frac{c-2010}{a-2009}=1\Rightarrow a-2009=c-2010=b-2011\)

\(\Rightarrow a=c-1=b-2\Rightarrow c=b-1\Rightarrow\frac{b}{c}=\frac{b}{b-1}\)=.=' ko chắc lăm

2 tháng 10 2015

vi \(\frac{-2009}{2010}>\frac{-2010}{1010}=1\)

\(\frac{2010}{-2009}=\frac{-2010}{2009}<\frac{-2009}{2009}=-1\)

=> x<y

violympic vòng 2 

a: 2010/2011=1-1/2011

2011/2012=1-1/2012

mà -1/2011>-1/2012

nên 2010/2011>2011/2012

b: \(\dfrac{2010}{2011}< 1< \dfrac{2001}{2000}\)

nên -2010/2011>-2001/2000