\(\left(-32\right)^9\)và\(\left(-18\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

d, ta có :(-32)9=-(329) ;(-18)13=-(1813)

329=32\(\times\)328=32\(\times\)(322)4=32\(\times\)10244=32\(\times\)1024\(\times\)10243

1813=18\(\times\)1812=18\(\times\)(183)4=18\(\times\)58324=18\(\times\)5832\(\times\)58323

18\(\times\)5832 >16\(\times\)5832=32\(\times\)2916>32\(\times\)1024 =58323>10243 

nên 1813>329

vậy (-18)13 <(-32)9

16 tháng 10 2016

(-32)9=-(329)

(-18)13=-(1813)

329<369

ta có :369=(2\(\times\)18)9=29\(\times\)189

vì 184>164mà 164=(24)4=216

mà 216>29

\(\Rightarrow\)184>29

\(\Rightarrow\)184\(\times\)189>29\(\times\)189

\(\Rightarrow\)1813>369mà 36>329

\(\Rightarrow\)1813>329

\(\Rightarrow\)(-18)13<(-32)9

10 tháng 7 2019

\(\text{a) }\left(-\frac{1}{16}\right)^{100}=\frac{\left(-1\right)^{100}}{16^{100}}=\frac{1}{16^{100}}\)

\(\left(-\frac{1}{2}\right)^{500}=\frac{\left(-1\right)^{500}}{2^{500}}=\frac{1}{\left(2^5\right)^{100}}=\frac{1}{32^{100}}\)

Ta co 

\(16^{100}< 32^{100}\)

\(\Rightarrow\frac{1}{16^{100}}>\frac{1}{32^{100}}\)

\(\Rightarrow\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{2}\right)^{500}\)

6 tháng 9 2019

a. 

Ta có:

\(\left(-\frac{1}{16}\right)^{100}=\frac{\left(-1\right)^{100}}{16^{100}}=\frac{1}{16^{100}}\)

\(\left(-\frac{1}{2}\right)^{500}=\frac{\left(-1\right)^{500}}{2^{500}}=\frac{1}{\left(2^5\right)^{100}}=\frac{1}{32^{100}}\)

Vì \(\frac{1}{16^{100}}>\frac{1}{32^{100}}\Rightarrow\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{2}\right)^{500}\)

b.

Ta có:

\(\left(-32\right)^9=\left[-\left(2^5\right)\right]^9=-\left(2^{45}\right)\)

\(\left(-16\right)^{13}=\left[-\left(2^4\right)\right]^{13}=-\left(2^{52}\right)\)

Vì \(-\left(2^{45}\right)>-\left(2^{52}\right)\Rightarrow\left(-32\right)^9>\left(-16\right)^{13}\)

#Chúc bạn học tốt!#

20 tháng 1 2017

a)\(\frac{-5}{13}+\left(\frac{3}{5}+\frac{3}{13}-\frac{4}{10}\right)=\frac{-5}{13}-\frac{3}{5}-\frac{3}{13}+\frac{4}{10}=\left(\frac{-5}{13}-\frac{3}{13}\right)+\frac{4}{10}-\frac{3}{5}=\frac{-5-3}{13}+\left(\frac{4}{10}-\frac{6}{10}\right)=\frac{-8}{13}+\frac{-2}{10}=\frac{-80}{130}+\frac{-26}{130}=\frac{-106}{130}=\frac{-53}{65}\)

20 tháng 1 2017

tại sao bạn ra \(\frac{-5}{13}\)

7 tháng 3 2018

\(C=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.........\frac{2499}{2500}\)

\(=\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}......\frac{49.51}{50^2}\)

\(=\frac{2.3.4....49}{3.4.5....50}.\frac{4.5.6....51}{3.4.5....50}\)

\(=\frac{1}{25}.17=\frac{17}{25}\)

7 tháng 3 2018

\(a)\) \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{1000}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{999}{1000}\)

\(A=\frac{1.2.3.....999}{2.3.4.....1000}\)

\(A=\frac{1}{1000}.\frac{2.3.4.....999}{2.3.4.....999}\)

\(A=\frac{1}{1000}\)

Vậy \(A=\frac{1}{1000}\)

Bài 1:

Ta có:

\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)

\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)

Lại có:

\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)

\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)

Bài 2:

Ta có:

\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)

\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)

\(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)

\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)

\(\Rightarrow13A>13B\Rightarrow A>B\)

7 tháng 3 2018

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1000}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{999}{1000}\)

\(=\frac{1}{1000}\)

chúc

bn

hk

tốt

18 tháng 8 2020

Ta có \(\left(-\frac{1}{25}\right)5=\left(-\frac{1}{5}\right)^{2.5}=\left(-\frac{1}{5}\right)^{10}>\left(-\frac{1}{5}\right)^9\)