Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sorry nghe h tớ gửi quá 100 tin nhắn nên nó ko cho gửi
Bài 1
a)2711>818
b)6255>1257
c)536<1124
d)32n>23n
Bài 2
a)523<6.522
b)7.213>216
c)2115<275.498
a) Ta có:
5²³ = 5.5²²
Do 6 > 5 nên 6.5²² > 5.5²²
Vậy 6.5²² > 5²³
b) Ta có:
2¹⁶ = 2³.2¹³ = 8.2¹³
Do 8 > 7 nên 8.2¹³ > 7.2¹³
Vậy 2¹⁶ > 7.2¹³
c) Ta có:
21¹⁵ = (3.7)¹⁵ = 3¹⁵.7¹⁵
27⁵.49⁸ = (3³)⁵.(7²)⁸ = 3¹⁵.7¹⁶
Do 16 > 15 nên 7¹⁶ > 7¹⁵
⇒ 3¹⁵.7¹⁶ > 3¹⁵.7¹⁵
Vậy 27⁵.49⁸ > 21¹⁵
a: 5^23=5*5^22<6*5^22
=>6*5^22 lớn hơn
b: 7<8
=>7*2^13<8*2^13=2^16
=>2^16 lớn hơn
c: 21^15=3^15*7^15
27^5*49^8=3^15*7^16
mà 15<16
nên 27^5*49^8 lớn hơn
a, Ta có : \(8>7\)
\(\Rightarrow2^{13}.8=2^{16}>2^{13}.7\)
b, Ta có : \(199^{20}< 200^{20}=2^{60}.5^{40}\)
Mà \(2003^{15}>2000^{15}=2^{60}.2^{45}\)
Thấy : \(45>40\)
\(\Rightarrow2000^{15}>200^{20}\)
\(\Rightarrow2003^{15}>199^{20}\)
c, Ta có : \(\left\{{}\begin{matrix}202^{303}=\left(2.101\right)^{3.101}=\left(8.101^3\right)^{101}\\303^{202}=\left(3.101\right)^{2.101}=\left(9.101^2\right)^{101}\end{matrix}\right.\)
Mà \(8.101^3>9.101^2\)
\(\Rightarrow202^{303}>303^{202}\)
a) Ta có: \(2^{16}=2^{13}\cdot8\)
mà \(7< 8\)
nên \(7\cdot2^{13}< 2^{16}\)
b) \(199^{20}=1568239201^5\)
\(2003^{15}=8036054027^5\)
mà \(1568239201< 8036054027\)
nên \(199^{20}< 2003^{15}\)
c) Ta có: \(202^{303}=\left(202^3\right)^{101}\)
\(303^{202}=\left(303^2\right)^{101}\)
mà \(202^3>303^2\)
nên \(202^{303}>303^{202}\)
72^45-72^44=72^44(72-1)=72^44*71
72^44-72^43=72^43(72-1)=72^43*71
=>72^45-72^44>72^44-72^43
Bài toán 4: Viết các số sau dưới dạng tổng các luỹ thừa của 10.
213 = 2 . 100 + 1 . 10 +3 = 2. 10^2 + 1.10 + 3 . 10^0
421=4.100 + 2.10 + 1 = 4.10^2 + 2.10 + 1. 10^0
2009; = 2. 1000 + 9 = 2. 10^3 + 9 . 10^0
abc = a . 100 + b . 10 + c = a.10^2 + b.10 + c.10^0
abcde = a.10000 + b . 1000 + c . 100 + d . 10 + e = a . 10^4 + b. 10^3 + c.10^2 + d .10 + e . 10 ^0
\(a.10^{30}=\left(10^3\right)^{10}=1000^{10}\\ 2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì 100010 < 102410 => 1030 < 2100
\(b,333^{444}=\left(111\cdot3\right)^{444}=111^{444}\cdot3^{444}=111^{444}\cdot81^{111}\\ 444^{333}=\left(111\cdot4\right)^{333}=111^{333}\cdot4^{333}=111^{333}\cdot64^{111}\)
Vì 111444 >111333 ; 81111 > 64111 => 333444 > 444333
a) 2711 > 818
b) 6255 < 1257
c) 523 < 6.522
d) 7.213 < 216
nhoa mấy bn
a)\(27^{11}=3^{22}\); \(81^8=3^{24}\)
\(Do3^{24}>3^{22}nên27^{11}< 81^8\)