Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3^2+3^3+...+3^{99}\)
\(3B=3^3+3^4+...+3^{100}\)
\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)
\(2B=3^{100}-3^2\)
\(B=\frac{3^{100}-9}{2}\)
\(2B+9=3^{2n+4}\)
\(\Leftrightarrow3^{2n+4}=3^{100}\)
\(\Leftrightarrow2n+4=100\)
\(\Leftrightarrow n=48\).
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
a)\(x.3^{15}=3^{17}\)
\(x=3^{17}:3^{15}\)
\(x=3^2=9\)
b) \(5^x=6^x\Leftrightarrow x=1;x=0\)
c) \(x^3=x^6\)
\(x^3=x^3.x^3\) \(x^3=1\) \(x=1\) | \(x^3=\left(x^3\right)^2\) \(x=0\) |
B2 ss
a)\(3^{45}=\left(3^3\right)^{15}=27^{15}\)
\(4^{30}=\left(4^2\right)^{15}=16^{15}\)
vì 1615 < 2715 nên 430 < 345
b)
\(818.820=\left(819-1\right)\left(819+1\right)=819^2-1\)
vì 8192 > 8192 - 1 nên 8192 > 818.820
Tỉ số vận tốc người thứ nhất và người thứ hai là: 30/36 = 5/6
Trên cùng 1 quãng đường, vận tốc tỉ lệ nghịch với thời gian nên tỉ số thời gian người thứ nhất và người thứ hai đi là: 6/5
Hiệu thời gian đi hết quãng đường AB của người thứ 1 và người thứ 2 là: 20 - 5 = 15 phút
Bài toán: Hiệu - tỉ
Thời gian người thứ nhất đi là: 15 : (6 - 5) x 6 = 90 phút = 1,5 giờ
Quãng đường AB dài : 1,5 x 30 = 45 km
ĐS: 45
\(x+1-5⋮x+1\)
\(\Rightarrow5⋮x+1\)
\(\Rightarrow x+1=1;5;-1;-5\)
Đến đây thì dễ rồi tự lập bảng rồi tính