Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: A=1+2+2^2+2^3+2^4
=>2A=2+2^2+2^3+2^4+2^5
=>A=2^5-1
=>A=B
b: C=3+3^2+...+3^100
=>3C=3^2+3^3+...+3^101
=>2C=3^101-3
=>\(C=\dfrac{3^{101}-3}{2}\)
=>C=D
Ta có:
\(\left\{\begin{matrix}5^{27}=\left(5^3\right)^9=125^9\\2^{63}=\left(2^7\right)^9=128^9\end{matrix}\right\}\Rightarrow5^{27}< 2^{63}\left(1\right)\)
\(\left\{\begin{matrix}2^{63}=\left(2^9\right)^7=512^7\\5^{28}=\left(5^4\right)^7=625^7\end{matrix}\right\}\Rightarrow2^{63}< 5^{28}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow5^{27}< 2^{63}< 5^{28}\) (đpcm)
a )
2100+2100= 2100(1+1) =2100.2 = 2100+1= 2101
b)
3100+3100 = 3100(1+1) = 2.3100
3101= 3100.3
ta thấy 3. 3100 > 2.3100 Vậy 3101 > 3100+3100
c) 20177012 > 20172337.3 >>> 80002337
70122017 < 80002337
suy ra: 20177012 >>> 70122017
Ta có :
P = 1 + 3 + 32 + ... + 399 + 3100
3P = 3 + 32 + 33 + ... + 3100 + 3101
3P - P = ( 3 + 32 + 33 + ... + 3100 + 3101 ) - ( 1 + 3 + 32 + ... + 3100 + 3101 )
2P = 3101 - 1
P = \(\frac{3^{101}-1}{2}=\frac{3^{101}}{2}-\frac{1}{2}< \frac{3^{101}}{2}\)
Vậy P < \(\frac{3^{101}}{2}\)
Ta có:
\(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
\(...\)
\(\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
\(\Rightarrow M< N\)
A = 3+32+33+.....+3100
3A = 32+33+34+....+3101
2A = 3A - A = 3101-3 < 3101
=> A = \(\frac{3^{101}-3}{2}
A = 3 + 32 + 33 + 34 +.............3100
3A =32 + 33 + 34 +.............3101
3A - A = (3 + 32 + 33 + 34 +.............3100) - (32 + 33 + 34 +.............3101)
2A = 3101 - 3
\(A=\frac{3^{101}-3}{2}\)
B = 3101
Ta có A < B
\(C=3+3^2+3^3+...+3^{100}\\ 3C=3^2+3^3+3^4+...+3^{101}\\ 3C-C=2C=3^{101}-3\\ C=\dfrac{3^{101}-3}{2}< D=\dfrac{3^{101}}{2}\)