Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức:
Nếu a<b=>a/b<(a+k)/(b+k) (k thuộc N*)
Ta có:\(13^{16}+1x=\frac{13^{16}+1}{13^{17}+1}
Bn nhân cả x và y cho 13 nha
Ta có 10x=1+ 12 / 13^17+1 và 10 y= 1+12 / 13x^16+1
Do 12 / 13^17+1 < 12 / 13^16+1
=>10x<10y
=>x<y
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=\frac{13^{16}+1+12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=\frac{13^{17}+1+12}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Ta thấy:
\(13^{16}+1< 13^{17}+1\)
\(\Rightarrow\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
hay \(A>B\)
Vậy \(A>B.\)
a) \(A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{\frac{5}{11}-\frac{5}{13}-\frac{5}{17}}+\frac{\frac{2}{3}-\frac{2}{9}-\frac{2}{27}+\frac{2}{81}}{\frac{7}{3}-\frac{7}{9}-\frac{7}{27}+\frac{7}{81}}\)
\(=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)
\(=\frac{1}{5}+\frac{2}{7}\)
\(=\frac{7}{35}+\frac{10}{35}\)
\(=\frac{17}{35}\)
Vậy \(A=\frac{17}{35}\)
b) \(B=\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}+...+\frac{5^2}{56.61}\)
\(=5.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{56.61}\right)\)
\(=5.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}\right)\)
\(=5.\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(=5.\left(\frac{61}{671}-\frac{11}{671}\right)\)
\(=5.\frac{50}{671}\)
\(=\frac{250}{671}\)
Vậy \(B=\frac{250}{671}\)
Ta có: \(xy=\frac{13}{15}\Rightarrow x=\frac{13}{15y}\)
\(yz=\frac{1}{3}\Rightarrow y=\frac{1}{3z}\)
\(zx=-\frac{3}{13}\Rightarrow z=-\frac{3}{13x}\)
Thay x vào z ta có:
\(z=-\frac{3}{13x}=-\frac{3}{13.\frac{13}{15y}}\)
\(z=-\frac{45y}{169}\)
Thay y vào z ta có:
\(z=\frac{-45.\frac{1}{3}z}{169}\)
\(z=-\frac{15}{169}z\)( vô lý )
\(\Rightarrow\)z không có giá trị
\(\Rightarrow\)x;y không có giá trị
đpcm
Giải :
Nhân từng vế của ba đẳng thức đã cho ta được :
xy . yz . zx = 13/15 .11/3 . ( - 3/13 )
\(\Leftrightarrow\)( xyz )\(^2\)= - 11/15 ( 1 )
Đẳng thức (1) không xảy ra vì (xyz)\(^2\)\(>\)\(0\)
Vậy không tồn tại ba số hữu tỉ x , y , z thỏa mãn điều kiện đề bài
a. \(\frac{7}{15}< \frac{7}{14}=\frac{1}{2};\frac{15}{23}>\frac{15}{30}=\frac{1}{2}\text{ hay }\frac{7}{15}< \frac{1}{2}< \frac{15}{23}\)
Vậy \(\frac{7}{15}< \frac{15}{23}\).
b. \(x=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13x=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
\(y=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13y=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
Vì \(13^{17}+1>13^{16}+1\) nên \(\frac{12}{13^{17}+1}< \frac{12}{13^{16}+1}\)
Mà 1 = 1 => \(1+\frac{12}{13^{17}+1}< 1+\frac{12}{13^{16}+1}\text{ hay }13x< 13y\)
=> x < y.
ơn nha