Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}\sqrt{0,2}>0\\1=\sqrt{1}< \sqrt{3}\Rightarrow1-\sqrt{3}< 0\end{cases}\Rightarrow1-\sqrt{3}< \sqrt{0,2}}\)
Ta có: \(\hept{\begin{cases}\sqrt{0,5}>0\\\sqrt{3}< \sqrt{4}=2\Rightarrow\sqrt{3}-2< 0\end{cases}\Rightarrow\sqrt{0,5}>\sqrt{3}-2}\)
A=\(\frac{1}{\sqrt{2018}+\sqrt{2017}}\)
B=\(\frac{1}{\sqrt{2016}+\sqrt{2015}}\)
=> A<B
Ta có :
\(\left(\sqrt{2015}+\sqrt{2017}\right)^2=2015+2\sqrt{2015.2017}+2017=8064+2\sqrt{2015.2017}\)
\(\left(2\sqrt{2016}\right)^2=8064\)
Vì \(\left(\sqrt{2015}+\sqrt{2017}\right)^2>\left(2\sqrt{2016}\right)^2\) nên \(\sqrt{2015}+\sqrt{2017}>2\sqrt{2016}\)
Vậy...
Chúc bạn học tốt ~
Ta có \(\sqrt{2015}+\sqrt{2016}< \sqrt{2016}+\sqrt{2017}\)
mà \(\left(\sqrt{2015}-\sqrt{2016}\right)\cdot\left(\sqrt{2015}+\sqrt{2016}\right)\)\(=\left(\sqrt{2016}-\sqrt{2017}\right)\cdot\left(\sqrt{2016}+\sqrt{2017}\right)\)\(=1\)
Suy ra \(\sqrt{2015}-\sqrt{2016}>\sqrt{2016}-\sqrt{2017}\)
Ta có:
\(\frac{1-\sqrt{n}+\sqrt{n+1}}{1+\sqrt{n}+\sqrt{n+1}}=\frac{\left(1-\sqrt{n}+\sqrt{n+1}\right)^2}{\left(1+\sqrt{n}+\sqrt{n+1}\right)\left(1-\sqrt{n}+\sqrt{n+1}\right)}=\frac{2n+2-2\sqrt{n}+2\sqrt{n+1}-2\sqrt{n\left(n+1\right)}}{2\left(1+\sqrt{n+1}\right)}\)
\(=\frac{\left[2n+2-2\sqrt{n}+2\sqrt{n+1}-2\sqrt{n\left(n+1\right)}\right]\left(1-\sqrt{n+1}\right)}{2\left(1+\sqrt{n+1}\right)\left(1-\sqrt{n+1}\right)}=\frac{-2n\sqrt{n+1}+2n\sqrt{n}}{-2n}=\sqrt{n+1}-\sqrt{n}\)
Suy ra:
\(Q=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2017}-\sqrt{2016}=\sqrt{2017}-\sqrt{2}< \sqrt{2017}-1=R\)
Vậy Q < R.
\(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015\cdot2018}\)
\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016\cdot2017}\)
\(2015\cdot2018=2015\cdot2017+2015=2017\cdot\left(2015+1\right)-2017+2015\)
\(=2017\cdot2016-2\)
\(\Rightarrow2015\cdot2018< 2016\cdot2017\)
\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\)
có bạn nào giải thích cho mình từ đoạn 2015.2018=2015.2017+2015 trở đi được k? mình cảm ơn