\(\sqrt{15}-\sqrt{14}\) và b=\(\sqrt{14}-\sqrt{13}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

ta có:

+) \(\left(\sqrt{15}-\sqrt{14}\right)\left(\sqrt{15}+\sqrt{14}\right)=1\)

\(\Rightarrow\sqrt{15}-\sqrt{14}=\frac{1}{\sqrt{15}+\sqrt{14}}\)

+) \(\left(\sqrt{14}-\sqrt{13}\right)\left(\sqrt{14}+\sqrt{13}\right)=1\)

\(\Rightarrow\sqrt{14}-\sqrt{13}=\frac{1}{\sqrt{14}+\sqrt{13}}\)

\(\sqrt{15}+\sqrt{14}>\sqrt{14}+\sqrt{13}\) nên \(\frac{1}{\sqrt{15}+\sqrt{14}}< \frac{1}{\sqrt{14}+\sqrt{13}}\)

\(\Rightarrow\sqrt{15}-\sqrt{14}< \sqrt{14}-\sqrt{13}\)

16 tháng 6 2017

a)    \(\sqrt{7}-\sqrt{5}< \sqrt{5}-\sqrt{3}\)

b)     \(\sqrt{15}-\sqrt{14}< \sqrt{14}-\sqrt{13}\)

23 tháng 8 2018

Đặt A = \(\sqrt{15}\)-\(\sqrt{14}\)và B = \(\sqrt{14}\)-\(\sqrt{13}\)(A, B >0)

A^2 = 29-2\(\sqrt{15.14}\) và B^2 = 27 -2\(\sqrt{14.13}\)

A^2-B^2 = 2-2(\(\sqrt{15.14}\)+\(\sqrt{14.13}\)) <0

=> A^2 < B^2 => A<B

31 tháng 7 2018

a)\(\sqrt{8}+3< \sqrt{9}+3=3+3=6< 6+\sqrt{2}\)

b)\(14=\sqrt{196}>\sqrt{195}=\sqrt{13.15}=\sqrt{13}.\sqrt{15}\)

c) Ta có: \(\hept{\begin{cases}\sqrt{27}>\sqrt{25}=5\\\sqrt{6}>\sqrt{4}=2\end{cases}\Rightarrow\sqrt{27}+\sqrt{6}+1>5+2+1=8}\)

Mà \(\sqrt{48}< \sqrt{49}=7< 8\)

\(\Rightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)

Tham khảo nhé~

6 tháng 7 2018

Tính ra rồi so sánh

6 tháng 7 2018

a,\(\sqrt{12}=2\sqrt{3}=\sqrt{3}+\sqrt{3}\)

ta có \(\sqrt{5}>\sqrt{3}\)\(\sqrt{7}>\sqrt{3}\)=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)

2 tháng 10 2017

\(A=\sqrt{15}-\sqrt{14}=\dfrac{1}{\sqrt{15}+\sqrt{14}}\)

\(B=\sqrt{14}-\sqrt{13}=\dfrac{1}{\sqrt{14}+\sqrt{13}}\)

hiển nhiên

\(\sqrt{15}+\sqrt{14}>\sqrt{14}+\sqrt{13}\)

\(=>A< B\)

7 tháng 9 2019

Với n\(\in\)N thì \(\frac{1}{\sqrt{n+4}+\sqrt{n}}=\frac{\sqrt{n+4}-\sqrt{n}}{n+4-n}\)\(=\frac{\sqrt{n+4}-\sqrt{n}}{4}\)

\(\Leftrightarrow\frac{4}{\sqrt{n+4}+\sqrt{n}}=\sqrt{n+4}-\sqrt{n}\) (1)

Áp dụng bất đẳng thức (1) ta được:

\(\sqrt{105}-\sqrt{101}=\frac{4}{\sqrt{105}+\sqrt{101}}\)

\(\sqrt{101}-\sqrt{97}=\frac{4}{\sqrt{101}+\sqrt{97}}\)

Ta thấy: \(\sqrt{105}+\sqrt{101}>\sqrt{101}+\sqrt{97}\)

\(\Leftrightarrow\frac{4}{\sqrt{105}+\sqrt{101}}< \frac{4}{\sqrt{101}+\sqrt{97}}\) hay \(\sqrt{105}-\sqrt{101}< \sqrt{101}-\sqrt{97}\)

Vậy bất đẳng thức được chứng minh.

29 tháng 7 2018

tính

\(\frac{a-\sqrt{ab}}{b-\sqrt{ab}}+\frac{b-\sqrt{ab}}{a+\sqrt{ab}}=\frac{a-ab+b-ab}{ab+b\sqrt{ab}-a\sqrt{ab}-ab}=\frac{a+b}{\sqrt{ab}\left(b-a\right)}\)

còn lại mk chịu

29 tháng 7 2018

bạn ghi rõ hơn nữa được không chứ mình chưa hiểu lắm