Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{2010}\)và \(\frac{-7}{19}\)
Ta có : \(\frac{1}{2010}>0>\frac{-7}{19}\)
\(\Rightarrow\frac{1}{2010}>\frac{-7}{19}\)
b)\(\frac{497}{-499}\)và \(\frac{-2345}{2341}\)
Ta có : \(\frac{497}{-499}< -1< \frac{-2345}{2341}\)
\(\Rightarrow\frac{497}{-499}>\frac{-2345}{2341}\)
c)\(\frac{2000}{2001}\)và \(\frac{2001}{2002}\)
Ta có : \(\frac{2000}{2001}=1-\frac{1}{2001};\frac{2001}{2002}=1-\frac{1}{2002}\)
mà \(\frac{1}{2001}>\frac{1}{2002}\Rightarrow1-\frac{1}{2001}< 1-\frac{1}{2002}\)
\(\Rightarrow\frac{2000}{2001}< \frac{2001}{2002}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2001^2}+\frac{1}{2002^2}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2000.2001}+\frac{1}{2001.2002}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2002}\)
\(\Rightarrow A< 1-\frac{1}{2002}=\frac{2001}{2002}\left(đpcm\right)\)
a.\(\frac{13}{17}\)=1-\(\frac{4}{17}\); \(\frac{46}{50}\)=1-\(\frac{4}{50}\)
Vì \(\frac{4}{17}\)>\(\frac{4}{50}\)=> 1-\(\frac{4}{17}\)<1-\(\frac{4}{50}\)
Vậy\(\frac{13}{17}\)<\(\frac{46}{50}\)
So sánh\(A=\frac{2^{2006}+7}{2^{2004}+7}\)và\(B=\frac{2^{2003}+1}{2^{2001}+1}\)
A A > B
B A = B
C A < B
Nếu
a < b
=) \(\frac{a}{b}< \frac{a+2001}{b+2001}\)
Nếu a > b
=) \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
Nếu a = b
=) \(\frac{a}{b}=\frac{a+2001}{b+2001}\)
Xét tích \(a\left(b+2001\right)=ab+2001a\\ b\left(a+2001\right)=ab+2001b.\)Vì \(b>0\)nên \(b+2001>0\).
Nếu \(a>b\) thì \(ab+2001a>ab+2001b\\ a\left(b+2001\right)>b\left(a+2001\right)\)
\(\frac{\Rightarrow a}{b}>\frac{a+2001}{b+2001}\)
Nếu \(a< b\) thì \(\frac{\Rightarrow a}{b}< \frac{a+2001}{b+2001}\)
Nếu \(a=b\) thì rõ ràng \(\frac{a}{b}=\frac{a+2001}{b+2001}\)