\(\frac{20^{2015}+1}{20^{2015}-1}\)Và \(B=\frac{20^{2015}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

A>1;B<1

A>B

21 tháng 6 2017

Ta có
\(A=\frac{20^{2015}+1}{20^{2015}-1}=\frac{20^{2015}-1+2}{20^{2015}-1}=1+\frac{2}{20^{2015}-1}\)
\(B=\frac{20^{2015}-1}{20^{2015}-3}=\frac{20^{2015}-3+2}{20^{2015}-3}=1+\frac{2}{20^{2015}-3}\)
Vì \(1+\frac{2}{20^{2015}-1}< 1+\frac{2}{20^{2015}-3}\)
\(\Rightarrow A< B\)

27 tháng 3 2016

Ta có A-1=2016/20^10-1

         B-1= 2016/20^10-3

 Suy ra a-1<B-1=>A<B

1 tháng 5 2018

Bài 1:

ta có: \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)

\(B=\frac{4^2-2^2}{2^2.4^2}+\frac{6^2-4^2}{4^2.6^2}+...+\frac{98^2-96^2}{96^2.98^2}+\frac{100^2-98^2}{98^2.100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{100^2}\)

\(B=\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\)

\(\Rightarrow B< \frac{1}{4}\)

Bài 2:

ta có: \(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

Học tốt nhé bn !!

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc

c) E=2010-1+2/2010-1=1+2/210-1

    F=2010-3+2/2010-3=1+2/2010-3

Vì 2/210-1>2/2010-3 nên E>F

a) Ta có: 10A=1020+10/1020+1

                    =1020+1/1020+1-9/1020+1

                    =1-9/1020+1

              10B=1021+10/1021+1

                    =1021+1/1021+1-9/1021+1

                    =1-9/1021+1

Vì 9/1020+1>9/1021+1 nên A>B

(Còn nữa)

6 tháng 4 2017

Vì \(2015^{2016}+1< 2015^{2017}+1\Rightarrow\frac{2015^{2016}+1}{2015^{2017}+1}< 1\)

\(\Rightarrow A=\frac{2015^{2016}+1}{2015^{2017}+1}< \frac{2015^{2016}+1+2014}{2015^{2017}+1+2014}=\frac{2015\left(2015^{2015}+1\right)}{2015\left(2015^{2016}+1\right)}=\frac{2015^{2015}+1}{2015^{2016}+1}=B\)

Vậy \(A< B\)

6 tháng 4 2017

\(2015A=\frac{2015^{2017}+2015}{2015^{2017}+1}=\frac{2015^{2017}+1+2014}{2015^{2017}+1}=1+\frac{2014}{2015^{2017}+1}\)

\(2015B=\frac{2015^{2016}+2015}{2015^{2016}+1}=\frac{2015^{2016}+1+2014}{2015^{2016}+1}=1+\frac{2014}{2015^{2016}+1}\)

vì \(\frac{2014}{2015^{2017}+1}< \frac{2014}{2015^{2016}+1}\)

nên \(2015A< 2015B\)

=> \(B>A\)

13 tháng 2 2018

A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)

B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)

Rồi bạn tự so sánh nha

9 tháng 7 2015

nhìn cái đề là thấy A và B cùng tử

mẫu của A < mẫu của B thì

A>B

29 tháng 1 2016

từ đó ta sẽ 

=> A>B