\(A=\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\)với \(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019

1. \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)>1

2. A>B

14 tháng 3 2018

Ta có : 

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=50.\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)

\(\Rightarrow\)\(S>\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

Chúc bạn học tốt ~

14 tháng 3 2018

\(S>\frac{1}{100}\cdot50=\frac{1}{2}\)

16 tháng 4 2018

gửi lắm thế m

15 tháng 3 2018

Ta có : 

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=50.\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)( có 50 số \(\frac{1}{100}\)

\(\Rightarrow\)\(S>\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

Chúc bạn học tốt ~

15 tháng 3 2018

camon bạn 

1 tháng 4 2018

a) \(\frac{1}{2}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< 1\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)+...+\left(\frac{1}{91}+\frac{1}{92}+...+\frac{1}{100}\right)\)\(\frac{1}{60}\cdot10< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}\cdot10\)

\(\frac{1}{6}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{5}\)(1)

\(\frac{1}{70}\cdot10< \frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}< \frac{1}{60}\cdot10\)

\(\frac{1}{7}< \frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}< \frac{1}{6}\)(2)

.... (tương tự )

\(\frac{1}{100}\cdot10< \frac{1}{91}+\frac{1}{92}+...+\frac{1}{100}< \frac{1}{90}\cdot10\)

\(\frac{1}{10}< \frac{1}{91}+...+\frac{1}{100}< \frac{1}{9}\)

1 tháng 4 2018

Từ (1)(2)(3)(4) và (5)

\(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\)

\(\frac{1}{2}< \frac{1624}{2520}< \frac{1}{51}+...+\frac{1}{100}\)

\(1>\frac{1879}{2520}>\frac{1}{51}+...+\frac{1}{100}\)

13 tháng 3 2018

1/1 . 2 + 1/ 3 . 4 + 1/5 . 6 + ...+ 1/99 . 100 

= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ...+ 1/99 - 1/100 

= ( 1 + 1/3 + 1/5 + ...+ 1/99 ) - ( 1/2 + 1/4 + ...+ 1/100 ) 

= ( 1 + 1/2 + 1/3 + ...+ 1/99 + 1/100 ) - 2 . ( 1/2 + 1/4 + ...+ 1/100 ) 

= ( 1 + 1/2 + 1/3 + ...+ 1/99 + 1/100 ) - ( 1 + 1/2 + ...+ 1/50 ) 

=     1/51 + 1/52 + ...+ 1/100 

Tham khảo nha !!! 

13 tháng 3 2018

\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}-1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)   (đpcm)

4 tháng 3 2016

bằng nhau <3 nhé !