Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{\left(2n\right)^2}< \frac{1}{2}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)=B\)
2B=1-1/(2n+1)
B=1/2-1/{2.(2n+1)Ư
KL A<1/2
Đặt \(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right).........\left(\frac{1}{100^2}-1\right)\)
\(\Rightarrow A=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.\frac{1-4^2}{4^2}............\frac{1-100^2}{100}\)
\(\Rightarrow A=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}............\frac{-9999}{100^2}\)
\(\Rightarrow A=\frac{-1.3}{2^2}.\frac{-2.4}{3^2}.\frac{-3.5}{4^2}...............\frac{-99.101}{100^2}\)
\(\Rightarrow A=\frac{-\left(1.2.3.............99\right).\left(3.4.5............101\right)}{\left(2.3.4......100\right).\left(2.3.4.............100\right)}\)
\(\Rightarrow A=\frac{-1.101}{100.2}=\frac{-101}{200}\)
Vậy \(A=\frac{-101}{200}\)
Chúc bn học tốt
a) Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)
\(\Rightarrow\)A < 1
b) \(B=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)
\(B=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^3}+...+\frac{1}{n^2}\right)\)
vì \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}< 2-\frac{1}{n}< 2\)
\(\Rightarrow B< \frac{1}{2^2}.2=\frac{1}{2}\)
\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{n}<1\)
Ta có : \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)
\(=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
\(< \frac{1}{4}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right)n}\right)\)
\(=\frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(=\frac{1}{4}.\left(2-\frac{1}{n}\right)\)
\(=\frac{1}{2}-\frac{1}{4n}< 1\)
Vậy A < 1
\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}.\)
\(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{4n^2}.\)
\(A=\frac{1}{4}\left(1+\frac{1}{4}+\frac{1}{9}+...+\frac{1}{n^2}\right)\)
\(A=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
So sánh \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};....\)
\(\Rightarrow A< \frac{1}{4}\left(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{n\left(n-1\right)}\right)\)
\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{n-1}+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(\Rightarrow A< \frac{1}{4}\left(1+1-\frac{1}{n}\right)\)
\(\Rightarrow A< \frac{1}{4}\left(2-\frac{1}{n}\right)\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{4n}\)
có \(\frac{1}{2}>\frac{1}{2}-\frac{1}{4n}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{4n}< \frac{1}{2}\) mà \(\frac{1}{2}< 1\)
\(\Rightarrow A< 1\)