\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}vàa+b+c\ne0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2015

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c (a; b; c khác 0 vì b; a; c là các mẫu số)

=> \(M=\frac{a^2b^2c^{1930}}{b^{1935}}=\frac{b^2b^2b^{1930}}{b^{1935}}=\frac{b^{1934}}{b^{1935}}=\frac{1}{b}\)

Mà a = b = c

=> \(M=\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

19 tháng 10 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

a/b = b/c = c/a = (a+b+c)/(a+b+c) = 1 ( vì a+b+c khác 0)

vì a/b =1 nên a=b

vì b/c =1 nên b=c

vì c/a = 1 nên c=a

=> a=b=c

Cộng 3 ở 3 p/s đầu và trừ 4 ở p/s cuối . Nó sẽ xuất hiện tử chung thôi 

\(\frac{a+b-x}{b}+\frac{a+c-x}{b}+\frac{b+c-x}{a}+\frac{4x}{a+b+c}=1\)

\(\Leftrightarrow\left(\frac{a+b-x}{c}+1\right)+\left(\frac{a+c-x}{b}+1\right)+\left(\frac{b+c-x}{a}+1\right)+\left(\frac{4x}{a+b+c}-4\right)=0\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{b}+\frac{a+b+c-x}{a}+\frac{4\left(x-a-b-c\right)}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{b}+\frac{a+b+c-x}{a}-\frac{4\left(a+b+c-x\right)}{a+b+c}=0\)

\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}\right)=0\)

\(\Rightarrow a+b+c-x=0\)hoặc \(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}-\frac{4}{a+b+c}=0\)

Nếu \(a+b+c-x=0\Rightarrow x=a+b+c\)

Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{4}{a+b+c}=0\Rightarrow x\inℝ\)

14 tháng 8 2017

theo tinh chat cua day ti so bang nhau ta co:

a/b=b/c=c/a =a+b+c/b+c+a=1

suy ra: a/b=1

b/c=1

c/a=1

vay a=b=c=

14 tháng 8 2016

Hỏi đáp Toán

28 tháng 7 2016

bạn áp dụng dãy tỉ số bằng nhau là xong

28 tháng 7 2016

1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)

-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)

2) ta có \(\frac{a}{b}=\frac{c}{d}\)

đặt a=kb và c=kd

\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)