Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik làm thế này có đúng không nhỉ ? mai mik phải nộp cho thầy òi
a) Ta có :
abab = ab . 101
Để abab là số chính phương thì ab chỉ có thể bằng 101.
Mà ab là số có hai chữ số
=> abab không phải là số chính phương
b) Ta có :
abcabc = abc . 1001
Để abcabc là số chính phương thì abc chỉ có thể bằng 1001.
Mà abc là số có 3 chữ số
=> abcabc không phải là số chinh phương
c) Ta có :
ababab = ab . 10101
Để ababab là số chính phương thì ab chỉ có thể bằng 10101.
Mà ab là số có hai chữ số.
=> ababab không phải là số chính phương.
Kết luận : abab ; abcabc ; ababab ko phải là số chính phương (đpcm)
1) cm: abab chia hết cho 101
Ta có : ab . 101 = ab . ( 100 + 1) = ab00 + ab = abab
=> abab chia hết cho 101 ( not 11)
2) ta có: aaabbb = aaa.1000+ bbb
= a.111.1000 + b.111
= a.37.3.1000+ b.37.3
= 37(3000a+ 3b) chia hết cho 37
3)
Ta có: abcabc
= abc. 1000 + abc
= abc. 1001
= abc. 143. 7
= abc . 11 . 13. 7 chia hết cho 7; 11; 13
4) Ta có: ababab = abab.100+ ab
= (ab.100 + ab) .100+ab
= ab.10000+ ab.100 + ab
= ab . 10101
=> ababab chia hết cho 10101
5)
abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)
= a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a
= a . 909 + b . (-909)
= a . 909 - b . 909
= a . 9 . 101 - b . 9 . 101
= 9 . (a . 101 - b . 101) ⋮ 9
Bài dễ mà you ko tự suy nghĩ được, đúng là lười suy nghĩ
a) 2561=(52)61=52.61=5122
Vì 122>120 nên 5122>5120 hay 2561>5120
b) 1680 = (42)80= 42.80=4160
Vì 160>65 nên 4160>465 hay 1680>465
Mấy câu khác tự làm
Ta co :
\(\frac{abab}{cdcd}\) va \(\frac{ababab}{cdcdcd}\)
\(\Rightarrow\frac{abab}{cdcd}=\frac{ab}{cd}\)
\(\Rightarrow\frac{ababab}{cdcdcd}=\frac{ab}{cd}\)
Ta thay :\(\frac{ab}{cd}=\frac{ab}{cd}\)
Vay :\(\frac{abab}{cdcd}=\frac{ababab}{cdcdcd}\)
cấm ai đc copy bài tớ
Ta co :
\frac{abab}{cdcd}cdcdabab va \frac{ababab}{cdcdcd}cdcdcdababab
\Rightarrow\frac{abab}{cdcd}=\frac{ab}{cd}⇒cdcdabab=cdab
\Rightarrow\frac{ababab}{cdcdcd}=\frac{ab}{cd}⇒cdcdcdababab=cdab
Ta thay :\frac{ab}{cd}=\frac{ab}{cd}cdab=cdab
Vay :\frac{abab}{cdcd}=\frac{ababab}{cdcdcd}cdcdabab=cdcdcdababab