Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: A = a x (b + 1) = a x b + a; B = b x (a + 1) = b x a + b.
Vì a > b mà A và B cùng có (a x b)
Nên A > B.
Bạn à, đây không phải là toán lớp 5 nên mình không giải được nên bạn thông cảm nha!
a) \(\frac{abab}{cdcd}=\frac{ab.101}{cd.101}=\frac{ab}{cd};\frac{ababab}{cdcdcd}=\frac{ab.10101}{cd.10101}=\frac{ab}{cd}\)
Vậy \(\frac{ab}{cd}=\frac{abab}{cdcd}=\frac{ababab}{cdcdcd}\)
b) thua
c) Ta có a + 1 > a - 1 nên \(\frac{1}{a+1}
Ta có: \(b=a+1\Rightarrow b-a=1\)
\(\frac{1}{a}\times\frac{1}{b}=\frac{1}{a\times b}\)(1)
\(\frac{1}{a}-\frac{1}{b}=\frac{b-a}{a\times b}=\frac{1}{a\times b}\)(2)
Từ (1) và (2) suy ra \(\frac{1}{a}\times\frac{1}{b}=\frac{1}{a}-\frac{1}{b}\)
Ta có: b=a+1=>b-a=1
Theo bài ra ta có: \(\frac{1}{a}.\frac{1}{b}=\frac{1}{a.b}=\frac{b-a}{a.b}\left(b-a=1\right)=\frac{b}{a.b}=\frac{a}{a.b}=\frac{1}{a}-\frac{1}{b}\)
=>\(\frac{1}{a}.\frac{1}{b}=\frac{1}{a}-\frac{1}{b}\)