Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=\(\dfrac{2004}{2005}\) = \(1-\dfrac{1}{2005}\)
B= \(\dfrac{2005}{2006}=1-\dfrac{1}{2006}\)
=> \(1-\dfrac{1}{2005}>1-\dfrac{1}{2006}\)
=> \(\dfrac{2004}{2005}\) > \(\dfrac{2005}{2006}\) => A > B
Phần sau tương tự
\(A=\frac{1001^{1001}}{1002^{1002}}=\frac{1001^{1000}.1001}{1002^{1001}.1002}\)
\(B=\frac{1001^{1001}+101101}{1002^{1002}+101202}=\frac{1001.1001^{1000}+1001.101}{1002.1002^{1001}+1002.101}\)
\(=\frac{1001\left(1001^{1000}+101\right)}{1002\left(1002^{1001}+101\right)}\)
Xét \(\frac{1001^{1000}+101}{1002^{1001}+101}\)\(-\frac{1001^{1000}}{1002^{1001}}\)
\(=\frac{1002^{1001}\left(1001^{1000}+101\right)-1001^{1000}\left(1002^{1001}+101\right)}{\left(1002^{1001}+101\right).1002^{1001}}\)
\(=\frac{1002^{1001}.1001^{1000}+1002^{1001}.101-1001^{1000}.1002^{1001}-1001^{1000}.101}{\left(1002^{1001}+101\right).1002^{1001}}\)
\(=\frac{101\left(1002^{1001}-1001^{1000}\right)}{\left(1002^{1001}+101\right).1002^{1001}}>0\)
=> \(\frac{1001^{1000}+101}{1002^{1001}+101}\)\(>\frac{1001^{1000}}{1002^{1001}}\)
=> \(\frac{1001\left(1001^{1000}+101\right)}{1002\left(1002^{1001}+101\right)}>\frac{1001^{1000}.1001}{1002^{1001}.1002}\)
=> \(B>A\)
\(\frac{1000x1003}{1001x1002}\),\(\frac{1001x1002}{1003x1001}\),\(\frac{1000x1002}{1003x1001}\)
0.999998006 ,0.999002991 ,0.998004986
vậy \(\frac{1000x1003}{1001x1002}\)là ps lớn nhất
1)Ta có: A= 2004/2005=1- 1/2005 B=2005/2006=1- 1/2006 1/2005>1/2006 =>1- 1/2005 < 1- 1/2006
Vậy A<B.
2)Tương tự như trên,1001/1002<1002/1003