K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

1)Ta có: A= 2004/2005=1- 1/2005          B=2005/2006=1- 1/2006        1/2005>1/2006  =>1- 1/2005 < 1- 1/2006

Vậy A<B.

2)Tương tự như trên,1001/1002<1002/1003

17 tháng 9 2018

Ta có: A=\(\dfrac{2004}{2005}\) = \(1-\dfrac{1}{2005}\)

B= \(\dfrac{2005}{2006}=1-\dfrac{1}{2006}\)

=> \(1-\dfrac{1}{2005}>1-\dfrac{1}{2006}\)

=> \(\dfrac{2004}{2005}\) > \(\dfrac{2005}{2006}\) => A > B

Phần sau tương tự

17 tháng 9 2018

nếu đúng thì bn tick hộ mk nhaleuleu

cảm ơn bn nhìuhehe

CHÚC BN HỌC TỐT

14 tháng 10 2019

\(A=\frac{1001^{1001}}{1002^{1002}}=\frac{1001^{1000}.1001}{1002^{1001}.1002}\)

\(B=\frac{1001^{1001}+101101}{1002^{1002}+101202}=\frac{1001.1001^{1000}+1001.101}{1002.1002^{1001}+1002.101}\)

\(=\frac{1001\left(1001^{1000}+101\right)}{1002\left(1002^{1001}+101\right)}\)

Xét \(\frac{1001^{1000}+101}{1002^{1001}+101}\)\(-\frac{1001^{1000}}{1002^{1001}}\)

\(=\frac{1002^{1001}\left(1001^{1000}+101\right)-1001^{1000}\left(1002^{1001}+101\right)}{\left(1002^{1001}+101\right).1002^{1001}}\)

\(=\frac{1002^{1001}.1001^{1000}+1002^{1001}.101-1001^{1000}.1002^{1001}-1001^{1000}.101}{\left(1002^{1001}+101\right).1002^{1001}}\)

\(=\frac{101\left(1002^{1001}-1001^{1000}\right)}{\left(1002^{1001}+101\right).1002^{1001}}>0\)

=> \(\frac{1001^{1000}+101}{1002^{1001}+101}\)\(>\frac{1001^{1000}}{1002^{1001}}\)

=> \(\frac{1001\left(1001^{1000}+101\right)}{1002\left(1002^{1001}+101\right)}>\frac{1001^{1000}.1001}{1002^{1001}.1002}\)

=> \(B>A\)

15 tháng 10 2019

Mình cảm ơn ạ! Hi vọng sau này ban sẽ giúp mình nữa nha ^^ 

24 tháng 1 2016

kết quả là dấu bé

24 tháng 1 2016

dấu bé nhớ tích cho mình

13 tháng 3 2017

\(\frac{1000x1003}{1001x1002}\),\(\frac{1001x1002}{1003x1001}\),\(\frac{1000x1002}{1003x1001}\)

0.999998006     ,0.999002991        ,0.998004986

vậy \(\frac{1000x1003}{1001x1002}\)là ps lớn nhất

13 tháng 3 2017

hoa mắt quá bạn ạ

29 tháng 3 2018

A>B chúc bạn học tốt